Write an equation for a sinusoidal graph with the following properties: A=-3 per

babeeb0oL 2021-08-22 Answered
Write an equation for a sinusoidal graph with the following properties:
A=3 period =2π3 phase shift =π4
You can still ask an expert for help

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

rogreenhoxa8
Answered 2021-08-23 Author has 109 answers
Step 1
The general equation of sinusoidal equation is y=Asin(kxϕ) where A is the amplitude, C is the phase shift.
Equation the given period that is 2π3 to 2πk to obtain the value of k.
2π3=2πk
k=3
Step 2
Equate the given phase shift to ϕk and Substitute 3 for k in π4=ϕk to obtain the value of ϕ
π4=ϕ3
ϕ=3π4
Substitute the obtained values of A, k, ϕ in y=Asin(kxϕ) and simplify to obtain the equation of sinusoidal equation.
y=Asin(kxϕ)
y=3sin(3x(3π4))
=3sin(3x+3π4)
Not exactly what you’re looking for?
Ask My Question

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-01-06
Draw a graph for each expression.
a) f(x)=2x
b) f(x)=2x
c) f(x)= 2x
d) f(x)= 2x
asked 2020-12-31
Prove the relation T=S.
asked 2021-08-15
If f(θ)=tanθ and f(a)=2, find the exact value of:
a) f(a)
b) f(a)+f(a+π)+f(a+2π)
asked 2022-02-13
Constructing a transformation satisfying the given properties
Construct a transformation which maps the plane into the plane itself , and the curve y=x2 onto the horizontal axis, and the line y=3 onto the vertical axis.
I need to solve the set of equations
T(x,x2)=(x,0)
T(x,3)=(0,y)
but couldn't. Any hints?
asked 2022-02-15
Creating a transformation matrix
This question is related to this one, but more specific. I was given the following question:
Let D={d1,d2} and B={b1,b2} be bases for vector spaces V and W respectively. Let T:VW be a linear transformation with the property that T(d1)=5b17b2 and T(d2)=9b1+4b2. Find the matrix for T relative to D and B.
This is a pretty simple question and I just took the transformation properties and made a matrix:
(5794)
The answer key has the same answer but with the rows and columns switched:
(5974)
Are these both correct?
asked 2021-08-19
Explain how to find the value of sin 390 using periodic properties.
asked 2022-02-15
Mobius transformation satisfying certain properties
I'm having some trouble showing that a Mobius transformation F maps 0 to  and  to 0 iff F(z)=dz1 for some dC. Mainly with the "only if" part. Do I need to use pictures?