Combining radicals simplify the expression. Assume that all letters denote positive numbers. displaystylesqrt{{{16}{x}}}+sqrt{{{x}^{5}}}

Question
Combining radicals simplify the expression. Assume that all letters denote positive numbers.
\(\displaystyle\sqrt{{{16}{x}}}+\sqrt{{{x}^{5}}}\)

Answers (1)

2021-02-09
Property of \(\displaystyle{\sqrt[{s}]{}}:\)
\(\displaystyle\sqrt{{{a}{b}}}=\sqrt{{a}}\sqrt{{b}}\)
Distributive property:
\(\displaystyle{a}{\left({b}+{c}\right)}={a}{b}+{a}{c}\)
Calculation:
Apply exponent rule simplify the expression,
\(\displaystyle\sqrt{{{16}{x}}}+\sqrt{{{x}^{5}}}=\sqrt{{{2}^{4}\times{x}}}+\sqrt{{{x}^{4}\times{x}}}\)
\(\displaystyle=\sqrt{{{2}^{4}}}\times\sqrt{{x}}+\sqrt{{{x}^{4}}}\times\sqrt{{x}}\)
Using distributive property.
\(\displaystyle=\sqrt{{x}}\times{\left({2}^{{\frac{4}{{2}}}}+{x}^{{\frac{4}{{2}}}}\right)}\)
\(\displaystyle=\sqrt{{x}}\times{\left({4}+{x}^{2}\right)}\)
Answer: \(\displaystyle\sqrt{{{16}{x}}}+\sqrt{{{x}^{5}}}=\sqrt{{x}}\times{\left({4}+{x}^{2}\right)}\)
0

Relevant Questions

asked 2020-11-26
Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
\(\displaystyle\sqrt{{{x}^{3}}}\)
asked 2020-12-30
Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
\(\displaystyle{\frac{{\sqrt{{{4}}}{\left\lbrace{x}^{{{7}}}\right\rbrace}}}{{\sqrt{{{4}}}{\left\lbrace{x}^{{{3}}}\right\rbrace}}}}\)
asked 2021-03-05
Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
\(\displaystyle{\frac{{\sqrt{{{3}}}{\left\lbrace{8}{x}^{{{2}}}\right\rbrace}}}{{\sqrt{{{x}}}}}}\)
asked 2021-01-16
Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers. NKS \(\displaystyle\sqrt{{{x}^{{{5}}}}}{x}{5}\)
asked 2020-12-01
Radical simplify the expression, and eliminate any negative exponents(s). Assume that all letters denote positive numbers.
a) \(\displaystyle\sqrt{{{6}}}{\left\lbrace{y}^{{{5}}}\right\rbrace}\sqrt{{{3}}}{\left\lbrace{y}^{{{2}}}\right\rbrace}\)
b) \(\displaystyle{\left({5}\sqrt{{{3}}}{\left\lbrace{x}\right\rbrace}\right)}{\left({2}\sqrt{{{4}}}{\left\lbrace{x}\right\rbrace}\right)}\)
asked 2021-02-06
Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers. \(\sqrt{x^{5}}\)
asked 2021-02-12
Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
\(\frac{\sqrt[3]{8x^{2}}}{\sqrt{x}}\)
asked 2020-11-23
To multiply:
The given expression. Then simplify if possible. Assume that all variables represent positive real numbers.
Given:
An expression: \(\displaystyle\sqrt{{3}}{\left(\sqrt{{27}}-\sqrt{{3}}\right)}\)
asked 2021-02-22
Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
a) \(r^{^1/_6}\ r^{^5/_6}\)
b) \(a^{^3/_5}\ a^{^3/_{10}}\)
asked 2021-02-05
The given expression using rational exponents. Then simplify and convert back to radical notation. Assume that all variables represent positive real numbers.
Given:
The expression is \(\displaystyle\sqrt{{{81}{a}^{12}{b}^{20}}}\)
...