Ask question

# Express the radical as power. displaystyle{left({a}right)}{sqrt[{{6}}]{{{x}^{5}}}} To simplify: The expression displaystyle{sqrt[{{6}}]{{{x}^{5}}}} and express the answer using rational exponents. (b) displaystyle{left(sqrt{{x}}right)}^{9} To simplify: The expression displaystyle{left(sqrt{{x}}right)}^{9} and express the answer using rational exponents. # Express the radical as power. displaystyle{left({a}right)}{sqrt[{{6}}]{{{x}^{5}}}} To simplify: The expression displaystyle{sqrt[{{6}}]{{{x}^{5}}}} and express the answer using rational exponents. (b) displaystyle{left(sqrt{{x}}right)}^{9} To simplify: The expression displaystyle{left(sqrt{{x}}right)}^{9} and express the answer using rational exponents.

Question
Rational exponents and radicals asked 2020-11-05
Express the radical as power.
$$\displaystyle{\left({a}\right)}{\sqrt[{{6}}]{{{x}^{5}}}}$$
To simplify:
The expression $$\displaystyle{\sqrt[{{6}}]{{{x}^{5}}}}$$ and express the answer using rational exponents.
(b) $$\displaystyle{\left(\sqrt{{x}}\right)}^{9}$$
To simplify:
The expression $$\displaystyle{\left(\sqrt{{x}}\right)}^{9}$$ and express the answer using rational exponents.

## Answers (1) 2020-11-06
(a) Concept used:
If ais a real number, n is a positive integer and $$root(n)(a^m)\ \text{is a real number then the rational exponent expression}\ \displaystyle{\sqrt[{{n}}]{{{a}^{m}}}}\ \text{is equivalent to radical expression}\ \displaystyle{a}^{{\frac{m}{{n}}}}.$$
The above statement can be expressed as,
$$\displaystyle{\sqrt[{{n}}]{{a}}}^{m}={a}^{{\frac{m}{{n}}}}$$ ...... (1)
Calculation:
The given expression is $$\displaystyle{\sqrt[{{6}}]{{{x}^{5}}}}$$
Subtitute 6 for n, 5 for m and x for a in the equation (1) to obtain the equialent expression in rational exponent as,
$$\displaystyle{\sqrt[{{6}}]{{{x}^{5}}}}={\left({x}^{{\frac{1}{{6}}}}\right)}^{5}$$
$$\displaystyle={x}^{{\frac{5}{{6}}}}$$
Conclusion:
Thus, the equvalent expression of the expression $$\displaystyle{\sqrt[{{6}}]{{{x}^{5}}}}{i}{s}{x}^{{\frac{5}{{6}}}}.$$
(b) Calculation:
The given expression is $$\displaystyle{\left(\sqrt{{x}}\right)}^{9}$$
Subtitute 2 for n, 9 for m and x for a in the equation (1) to obtain the equialent expression in rational exponent as,
$$\displaystyle{\left(\sqrt{{x}}\right)}^{9}={\left({x}^{{\frac{1}{{2}}}}\right)}^{9}$$
$$\displaystyle={x}^{{\frac{9}{{2}}}}$$
Conclusion:
Thus, the equivalent expression of the expression $$\displaystyle{\left(\sqrt{{x}}\right)}^{9}{i}{s}{x}^{{\frac{9}{{2}}}}.$$

### Relevant Questions asked 2021-06-07
Express as a trigonometric function of one angle.
a) $$\cos2\sin(-9)-\cos9\sin2$$
Find the exact value of the expression.
b) $$\sin\left(\arcsin\frac{\sqrt{3}}{2}+\arccos0\right)$$ asked 2021-02-05
The given expression using rational exponents. Then simplify and convert back to radical notation. Assume that all variables represent positive real numbers.
Given:
The expression is $$\displaystyle\sqrt{{{81}{a}^{12}{b}^{20}}}$$ asked 2021-01-22
Use rational exponents to write a single radical expression.
$$\displaystyle{\sqrt[{{7}}]{{11}}}\times{\sqrt[{{6}}]{{13}}}$$ asked 2021-02-06
Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers. $$\sqrt{x^{5}}$$ asked 2020-11-26
Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
$$\displaystyle\sqrt{{{x}^{3}}}$$ asked 2021-02-09
Use rational exponents to write a single radical expression $$\left(\sqrt{x^{2}y^{5}}\right)^{12}$$ asked 2021-02-22
Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
a) $$r^{^1/_6}\ r^{^5/_6}$$
b) $$a^{^3/_5}\ a^{^3/_{10}}$$ asked 2021-01-15
Simplify each expression
(a) $$\displaystyle{\sqrt[{{4}}]{{{3}^{2}}}}$$
(b) $$\displaystyle{\sqrt[{{6}}]{{{\left({x}+{1}\right)}^{4}}}}$$ asked 2020-12-30
Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
$$\displaystyle{\frac{{\sqrt{{{4}}}{\left\lbrace{x}^{{{7}}}\right\rbrace}}}{{\sqrt{{{4}}}{\left\lbrace{x}^{{{3}}}\right\rbrace}}}}$$ asked 2021-03-05
Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
$$\displaystyle{\frac{{\sqrt{{{3}}}{\left\lbrace{8}{x}^{{{2}}}\right\rbrace}}}{{\sqrt{{{x}}}}}}$$
...