# A triangles has virtices of (0,0), (0,4), and (2,0). Find new

A triangles has virtices of (0,0), (0,4), and (2,0).
Find new vertices if:
A. $$\displaystyle{\left({x},{y}\right)}\to{\left({x}-{4}+{3}\right)}$$
B. $$\displaystyle{\left({x},{y}\right)}\to{\left(−{x},{y}\right)}$$
C. $$\displaystyle{\left({x},{y}\right)}\to{\left(−{y},{x}\right)}$$

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself.

2abehn
A. Using the rule $$\displaystyle{\left({x},{y}\right)}\to{\left({x}-{4},{y}+{3}\right)}$$
$$\displaystyle{\left({0},{0}\right)}\to{\left({0}-{4},{0}+{3}\right)}={\left(-{4},{3}\right)}$$
$$\displaystyle{\left({0},{4}\right)}\to{\left({0}−{4},{4}+{3}\right)}={\left(-{4},{7}\right)}$$
$$\displaystyle{\left({2},{0}\right)}\to{\left({2}−{4},{0}+{3}\right)}={\left(-{2},{3}\right)}$$
B. $$\displaystyle{\left({x},{y}\right)}\to{\left(-{x},{y}\right)}$$
$$\displaystyle{\left({0},{0}\right)}\to{\left({0},{0}\right)}$$
$$\displaystyle{\left({0},{4}\right)}\to{\left({0},{4}\right)}$$
$$\displaystyle{\left({2},{0}\right)}\to{\left(-{2},{0}\right)}$$
C. $$\displaystyle{\left({x},{y}\right)}\to{\left(-{y},{x}\right)}$$
$$\displaystyle{\left({0},{0}\right)}\to{\left({0},{0}\right)}$$
$$\displaystyle{\left({0},{4}\right)}\to{\left(-{4},{0}\right)}$$
$$\displaystyle{\left({2},{0}\right)}\to{\left({0},{2}\right)}$$