# Show that mapping {y}mapsto{r}{e}{f}{l}_{{L}}{y} is a linear transformation.

Question
Transformation properties
Show that mapping $${y}\mapsto{r}{e}{f}{l}_{{L}}{y}$$ is a linear transformation.

2021-01-20
Given information:
$${u}\ne{0}\in{R}^{n}{\quad\text{and}\quad}{L}={S}{p}{a}{n}{\left\lbrace{u}\right\rbrace}.$$
For y in $$R^{n},\ \text{the reflection of y in L is the point}\ refl_{L} y\ \text{defined by}\ refl_{L} y = 2\ \cdot\ proj_{L} y\ -\ y.$$
$$refl_{L} y\ \text{is the sum of haty}\ = proj_{L} y$$ and hath - y.
Calculation:
Consider $$T (y) = refl_{L} y.$$
Substitute $$2\ \cdot\ proj_{L} y\ -\ y\ \text{for}\ refl_{L} y.$$
$${T}{\left({y}\right)}={2}\cdot{p}{r}{o}{j}_{{L}}{y}-{y}{\left({1}\right)}$$
Apply Theorem 1 (b) as shown below.
Let u, v, and w be vectors in $$R^{n}$$, and let c be a scalar. Then
$${\left({u}+{v}\right)}\cdot{w}={u}\cdot{w}+{v}\cdot{w}$$
For any vectors y and z in $$R^{n}$$, and any scalars c and d, the properties of inner product as shown below.
Substitute $$cy\ +\ dz$$ for y in Equation (1).
$${T}{\left({c}{y}+{\left.{d}{z}\right.}\right)}={2}\cdot{p}{r}{o}{j}_{{L}}{\left({c}{y}+{\left.{d}{z}\right.}\right)}-{\left({c}{y}+{\left.{d}{z}\right.}\right)}$$
$$={2}{\left({c}{p}{r}{o}{j}_{{L}}{y}+{d}{p}{r}{o}{j}_{{L}}{z}\right)}-{\left({c}{y}+{\left.{d}{z}\right.}\right)}$$
$$={2}{c}{p}{r}{o}{j}_{{L}}{y}-{c}{y}+{2}{d}{p}{r}{o}{j}_{{L}}{z}-{\left.{d}{z}\right.}$$
$$={c}{\left({2}{p}{r}{o}{j}_{{L}}{y}-{y}\right)}+{d}{\left({2}{p}{r}{o}{j}_{{L}}{z}-{z}\right)}$$
$$= cT (y)\ +\ dT (z)$$
Therefore, the mapping {y}\mapsto{r}{e}{f}{l}_{{L}} y is a linear transformation.

### Relevant Questions

Use a counterexample to show that the statement is false.
$${T}:{R}^{2}\to{R}^{2},{T}{\left({x}_{{2}},{x}_{{2}}\right)}={\left({x}_{{1}}+{4},{x}_{{2}}\right)}$$ is a linear transformation?
Let $$T : U \rightarrow U$$ be a linear transformation and let beta be a basis of U Define the determinant det(T) of T as
det$$(T) = det([T]_{\beta}).$$
Show ta det (T) is well-defined, i. e. that it does not depend on the choice of the basis beta
Prove that T is invertible if and only if det $$(T) \neq 0.$$ If T is invertible, show that det $$(T^{-1}) = \frac{1}{det(T)}$$
Which of the following are linear transformations from $$RR^{2} \rightarrow RR^{2} ?$$
(d) Rotation: if $$x = r \cos \theta, y = r \sin \theta,$$ then
$$\overrightarrow{T}(x,y)=(r \cos(\theta+ \varphi), r \sin (\theta+ \varphi))$$
for some constants $$\angle \varphi$$
(f) Reflection: given a fixed vector $$\overrightarrow{r} = (a, b), \overrightarrow{T}$$ maps each point to its reflection with
respect to $$\overrightarrow{r} \overrightarrow{T}(\overrightarrow{x})=\overrightarrow{x}-2\overrightarrow{x}_{r \perp}$$
$$=2 \overrightarrow{x}_{r}-\overrightarrow{x}$$
Prove whether $${f}:\mathbb{R}\to\mathbb{R}\ \text{defined by}\ f{{\left({x}\right)}}={4}{x}-{2}$$ is a linear transformation.
Prove whether $${f}:\mathbb{R}\to\mathbb{R}\ \text{defined by}\ f{{\left({x}\right)}}={2}{x}$$ is a linear transformation.
Which one equivalent to the linear transformation $${T}:\mathbb{R}\to\mathbb{R}\ \text{defined by}\ {T}{\left({1}\right)}={2}?$$
Guided Proof Let $${v_{1}, v_{2}, .... V_{n}}$$ be a basis for a vector space V.
Prove that if a linear transformation $$T : V \rightarrow V$$ satisfies
$$T (v_{i}) = 0\ for\ i = 1, 2,..., n,$$ then T is the zero transformation.
To prove that T is the zero transformation, you need to show that $$T(v) = 0$$ for every vector v in V.
(i) Let v be the arbitrary vector in V such that $$v = c_{1} v_{1} + c_{2} v_{2} +\cdots + c_{n} V_{n}$$
(ii) Use the definition and properties of linear transformations to rewrite T(v) as a linear combination of $$T(v_{j})$$ .
(iii) Use the fact that $$T (v_{j}) = 0$$
to conclude that $$T (v) = 0,$$ making T the zero transformation.
Assum T: R^m to R^n is a matrix transformation with matrix A. Prove that if the columns of A are linearly independent, then T is one to one (i.e injective). (Hint: Remember that matrix transformations satisfy the linearity properties.
Linearity Properties:
If A is a matrix, v and w are vectors and c is a scalar then
$$A 0 = 0$$
$$A(cv) = cAv$$
$$A(v\ +\ w) = Av\ +\ Aw$$
Determine if a linear transformation function is
$${T}:{M}_{{3.3}},$$
$${T}{\left({A}\right)}={\left[\begin{matrix}{0}&{0}&{1}\\{0}&{1}&{0}\\{1}&{0}&{0}\end{matrix}\right]}{A}$$
$$\displaystyle\text{Let A be an}\ {n}\ \times\ {n}\ \text{matrix and suppose that}\ {L}:{M}_{{\cap}}\ \rightarrow\ {M}_{{\cap}}\ \text{is defined by}{L}{\left({x}\right)}={A}{X},\text{for}\ {X}\in{M}_{{\cap}}.\text{Show that L is a linear transformation.}$$
Let $${T}:\mathbb{R}^{2}\to\mathbb{R}^{2}$$ be the linear transformation that reflects each point through the
$$x_{1} axis.$$
Let $${A}={\left[\begin{matrix}{1}&{0}\\{0}&-{1}\end{matrix}\right]}$$
Find the linear or affine transformations that satisty the desired properties and write it in the form $$T(x) = Ax\ +\ b:$$
The transformation $$T\ :\ \mathbb{R}^{2}\ \rightarrow\ \mathbb{R}^{2}$$ sending the origin to itself and a triangle of vertices
$$(0,\ 0),\ (1,\ 0),\ (0,\ 1)$$ to a triangle of verices (0, 0),
$$(\sqrt{\frac{2}{2}},\ \sqrt{\frac{2}{2}}),\ (- \sqrt{\frac{2}{2}},\ \sqrt{2}).$$