# To determine the solution of the initial value problem {y}{''}+{4}{y}= sin{{t}}+{u}_{pi}{left({t}right)} sin{{left({t}-piright)}}: y(0) = 0, y'(0) = 0. Also, draw the graphs of the solution and of the forcing function and explain the relation between the solution and the forcing function..

To determine the solution of the initial value problem
$y{}^{″}+4y=\mathrm{sin}t+{u}_{\pi }\left(t\right)\mathrm{sin}\left(t-\pi \right):$
$y\left(0\right)=0,$
${y}^{\prime }\left(0\right)=0.$
Also, draw the graphs of the solution and of the forcing function and explain the relation between the solution and the forcing function..
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Viktor Wiley

Applying the Laplace transform to both sides of the differential equation
$y{}^{″}+4y=\mathrm{sin}t+{u}_{\pi }\left(t\right)\mathrm{sin}\left(t-\pi \right).$
$⇒L\left\{y{}^{″}+4y\right\}=L\left\{\mathrm{sin}t+{u}_{\pi }\left(t\right)\mathrm{sin}\left(t-\pi \right)\right\}$
$⇒L\left\{y{}^{″}\right\}+L\left\{4y\right\}=L\left\{\mathrm{sin}t\right\}+L\left\{{u}_{\pi }\left(t0\mathrm{sin}\left(t-\pi \right)\right\}$
By using $L\left\{{f}^{n}\left(t\right)\right\}={s}^{n}F\left(s\right)-{s}^{n-1}\left(0\right)-\dots -{f}^{\left(n-1\right)}\left(0\right)$ and
${e}^{-cs}G\left(s\right)=L\left\{{u}_{c}\left(t\right)g\left(t-c\right)\right\},L\left\{\mathrm{sin}t\right\}=\frac{1}{{s}^{2}+1}$
$⇒\left[{s}^{2}Y\left(s\right)-sy\left(0\right)-{y}^{\prime }\left(0\right)\right]+4Y\left(s\right)=\frac{1}{{s}^{2}+1}+\frac{{e}^{-\pi s}}{{s}^{2}+1}$
Using the initial conditions,
$⇒{s}^{2}Y\left(s\right)+4Y\left(s\right)=\frac{1+{e}^{-\pi s}}{{s}^{2}+1}$
$⇒Y\left(s\right)\left[{s}^{2}+4\right]=\frac{1+{e}^{-\pi s}}{{s}^{2}+1}$
$⇒Y\left(s\right)=\frac{1+{e}^{-\pi s}}{\left({s}^{2}+1\right)\left({s}^{2}+4\right)}$
By using the partial fraction $\frac{1+{e}^{-\pi s}}{\left({s}^{2}+1\right)\left({s}^{2}+4\right)}=\frac{1}{3}\left(1+{e}^{-\pi s}\right)⌊\frac{1}{\left({s}^{2}+1\right)}+\frac{1}{\left({s}^{2}+4\right)}⌋$
$⇒Y\left(s\right)=\frac{1}{3}\left(1+{e}^{-\pi s}\right)⌊\frac{1}{\left({s}^{2}+1\right)}+\frac{1}{\left({s}^{2}+4\right)}⌋$
Applying the inverse Laplace transformation on both sides,