A function f (t) that has the given Laplace transform F (s).

A function f (t) that has the given Laplace transform F (s).

Question
Transformation properties
asked 2020-10-21
A function f (t) that has the given Laplace transform F (s).

Answers (1)

2020-10-22
Given:
Laplace transform F (s) of a function f (t) defined on an interval \([0, \infty) - F (s) = \frac{2}{s(s^{2}+16)}\)
Calculation:
Given,
\(F (s) = \frac{2}{s(s^{2}+16)}\)
Partial fraction decomposition,
\(F (s) = \frac{2}{s(s^{2}+16)}\)
Approach:
The
\(=\frac{A}{s}+\frac{Bs+C}{s^{2}+16}\)
\(2=A(s^{2}+16)+s(Bs+C)\)
\(=s^{2}(A+B)+Cs+16A\)
Compare the Left hand side and Right hand side,
\(A = \frac{1}{8}\)
\(B = -\frac{1}{8}\)
\(C = 0\)
Substitute -
\(F (s) = \frac{1}{8s} - \frac{s}{8(s^{2}+16)}\)
Laplace transform,
\(L [f] = \int_{0}^\infty e^{-s}tf(t)dt\)
\(= F (s)\)
\(= \frac{2}{s(s^{2}+16)}\)
\(= \frac{1}{8s} - \frac{s}{8(s^{2}+16)}\)
Inverse Laplace transform-
\(L^{-1} [F] (t) = L^{-1} [ \frac{2}{s(s^{2}+16)}]\)
\(={L}^{ -{{1}}}{\left[\frac{1}{{{8}{s}}}-\frac{s}{{{8}{\left({s}^{2}+{16}\right)}}}\right]}\)
\(=\frac{1}{{8}}{L}^{ -{{1}}}{\left[\frac{1}{{s}}\right]}-\frac{1}{{8}}{L}^{ -{{1}}}{\left[\frac{s}{{{s}^{2}+{4}^{2}}}\right]}\)
\(=\frac{1}{{8}}-\frac{1}{{8}} \cos{{\left({4}{t}\right)}}\)
\({L}^{ -{{1}}}{\left[{F}\right]}{\left({t}\right)}=\frac{1}{{8}}{\left({1}- \cos{{\left({4}{t}\right)}}\right)}\)
\(= f(t)\)
Conclusion:
Hence, a function f (t) that has the given Laplace transform
\({F}{\left({s}\right)}=\frac{2}{{{s}{\left({s}^{2}+{16}\right)}}}{i}{s}\frac{1}{{8}}{\left({1}- \cos{{\left({4}{t}\right)}}\right)}.\)
0

Relevant Questions

asked 2021-01-13

The function
\(\begin{cases}t & 0\leq t<1\\ e^t & t\geq1 \end{cases}\)
has the following Laplace transform,
\(L(f(t))=\int_0^1te^{-st}dt+\int_1^\infty e^{-(s+1)t}dt\)
True or False

asked 2020-10-21
The Laplace transform of the function \({L}{\left\lbrace{6}{e}^{{-{3}{t}}}-{t}^{2}+{2}{t}-{8}\right\rbrace}\)
asked 2021-02-12
To find: The Laplace transform of the function
\({L}{\left\lbrace{t}^{4}-{t}^{2}-{t}+ \sin{\sqrt{{{2}{t}}}}\right\rbrace}\)
asked 2020-12-17
determine a function f(t) that has the given Laplace transform
\(F(s)=\frac{4s+5}{s^{2}+9}\)
asked 2020-12-28
determine a function f(t) that has the given Laplace transform F(s).
\(F(s) = \frac{3}{(s^2)}\)
asked 2021-02-16

Solution of I.V.P for harmonic oscillator with driving force is given by Inverse Laplace transform
\(y"+\omega^{2}y=\sin \gamma t , y(0)=0,y'(0)=0\)
1) \(y(t)=L^{-1}\bigg(\frac{\gamma}{(s^{2}+\omega^{2})^{2}}\bigg)\)
2) \(y(t)=L^{-1}\bigg(\frac{\gamma}{s^{2}+\omega^{2}}\bigg)\)
3) \(y(t)=L^{-1}\bigg(\frac{\gamma}{(s^{2}+\gamma^{2})^{2}}\bigg)\)
4) \( y(t)=L^{-1}\bigg(\frac{\gamma}{(s^{2}+\gamma^{2})(s^{2}+\omega^{2})}\bigg)\)

asked 2021-05-03
A continuous random variable X that can has a density function given by
\(f(x)=\begin{cases}.25\ \ \ if\ 0
Find
P(x=.5)
asked 2020-12-14
To state:
The solution of the given initial value problem using the method of Laplace transforms.
Given:
The initial value problem is,
\({y}\text{}+{6}{y}'+{5}{y}={12}{e}^{t},{y}{\left({0}\right)}=-{1},{y}'{\left({0}\right)}={7}\)
asked 2021-01-13

find the values of b such that the function has the given maximum or minimum value. \(f(x) = -x^2+bx-75\), Maximum value: 25

asked 2021-02-21
Which of the following are linear transformations from \(RR^{2} \rightarrow RR^{2} ?\)
(d) Rotation: if \(x = r \cos \theta, y = r \sin \theta,\) then
\(\overrightarrow{T}(x,y)=(r \cos(\theta+ \varphi), r \sin (\theta+ \varphi))\)
for some constants \(\angle \varphi\)
(f) Reflection: given a fixed vector \(\overrightarrow{r} = (a, b), \overrightarrow{T}\) maps each point to its reflection with
respect to \(\overrightarrow{r} \overrightarrow{T}(\overrightarrow{x})=\overrightarrow{x}-2\overrightarrow{x}_{r \perp}\)
\(=2 \overrightarrow{x}_{r}-\overrightarrow{x}\)
...