Question

Find xP(x), x^2 and x^2P(x) when: 1. x=1. P(x)=0.25. 2. x=2. P(x)=0.28.

Factors and multiples
ANSWERED
asked 2021-08-15
Find \(\displaystyle{x}{P}{\left({x}\right)},{x}^{{2}}{\quad\text{and}\quad}{x}^{{2}}{P}{\left({x}\right)}\) when:
1. x=1. P(x)=0.25.
2. x=2. P(x)=0.28.
3. x=3. P(x)=0.41.
4. x=4. P(x)=0.06.

Answers (1)

2021-08-16
1. \(\displaystyle{x}{P}{\left({x}\right)}={1}\times{0.25}={0.25}\)
\(\displaystyle{x}^{{2}}={1}^{{2}}={1}\)
\(\displaystyle{x}^{{2}}{P}{\left({x}\right)}={1}^{{2}}\times{0.25}={0.25}\)
2.\(\displaystyle{x}{P}{\left({x}\right)}={2}\times{0.28}={0.56}\)
\(\displaystyle{x}^{{2}}={2}^{{2}}={4}\)
\(\displaystyle{x}^{{2}}{P}{\left({x}\right)}={2}^{{2}}\times{0.28}={1.12}\)
3. \(\displaystyle{x}{P}{\left({x}\right)}={3}\times{0.41}={1.23}\)
\(\displaystyle{x}^{{2}}={3}^{{2}}={9}\)
\(\displaystyle{x}^{{2}}{P}{\left({x}\right)}={3}^{{2}}\times{0.41}={3.69}\)
4. \(\displaystyle{x}{P}{\left({x}\right)}={4}\times{0.06}={0.24}\)
\(\displaystyle{x}^{{2}}={4}^{{2}}={16}\)
\(\displaystyle{x}^{{2}}{P}{\left({x}\right)}={4}^{{2}}\times{0.06}={0.96}\)
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-08-11
Write the prime factorization
1. 20
2. 36
3. 28
4. 60
asked 2021-08-07
Use either the multiples method or the prime factors method to find the least common multiple of 12 and 28.
Note: Enter only the least common multiple as your answer.
asked 2021-06-13
1. Who seems to have more variability in their shoe sizes, men or women?
a) Men
b) Women
c) Neither group show variability
d) Flag this Question
2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?
a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation
b) The estimate n-1 is never used to calculate the sample variance and standard deviation
c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population
d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.
\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)
\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)
asked 2021-08-10
Multiply \(\displaystyle\frac{{1}}{{9}}{\quad\text{and}\quad}\frac{{24}}{{25}}\)
...