Question

# Find xP(x), x^2 and x^2P(x) when: 1. x=1. P(x)=0.25. 2. x=2. P(x)=0.28.

Factors and multiples
Find $$\displaystyle{x}{P}{\left({x}\right)},{x}^{{2}}{\quad\text{and}\quad}{x}^{{2}}{P}{\left({x}\right)}$$ when:
1. x=1. P(x)=0.25.
2. x=2. P(x)=0.28.
3. x=3. P(x)=0.41.
4. x=4. P(x)=0.06.

2021-08-16
1. $$\displaystyle{x}{P}{\left({x}\right)}={1}\times{0.25}={0.25}$$
$$\displaystyle{x}^{{2}}={1}^{{2}}={1}$$
$$\displaystyle{x}^{{2}}{P}{\left({x}\right)}={1}^{{2}}\times{0.25}={0.25}$$
2.$$\displaystyle{x}{P}{\left({x}\right)}={2}\times{0.28}={0.56}$$
$$\displaystyle{x}^{{2}}={2}^{{2}}={4}$$
$$\displaystyle{x}^{{2}}{P}{\left({x}\right)}={2}^{{2}}\times{0.28}={1.12}$$
3. $$\displaystyle{x}{P}{\left({x}\right)}={3}\times{0.41}={1.23}$$
$$\displaystyle{x}^{{2}}={3}^{{2}}={9}$$
$$\displaystyle{x}^{{2}}{P}{\left({x}\right)}={3}^{{2}}\times{0.41}={3.69}$$
4. $$\displaystyle{x}{P}{\left({x}\right)}={4}\times{0.06}={0.24}$$
$$\displaystyle{x}^{{2}}={4}^{{2}}={16}$$
$$\displaystyle{x}^{{2}}{P}{\left({x}\right)}={4}^{{2}}\times{0.06}={0.96}$$