 For which x > 0 does the generalized ratio test imply convergence of \sum_{n=1}^\infty a_{n}? ossidianaZ 2021-08-14 Answered

The following advanced exercise use a generalized ratio test to determine convergence of some series that arise in particular applications, including the ratio and root test, are not powerful enough to determine their convergence.

The test states that if

$$\lim_{n \rightarrow \infty} \frac{a_{2 n}}{a_{n}}<1 / 2$$

then $$\sum a_{n}$$ converges,while if

$$\lim_{n \rightarrow \infty} \frac{a_{2 n+1}}{a_{n}}>1 / 2$$,

then $$\sum a_{n}$$  diverges. Let $$\displaystyle{a}_{{{n}}}={\frac{{{1}}}{{{1}+{x}}}}{\frac{{{2}}}{{{2}+{x}}}}\ldots{\frac{{{n}}}{{{n}+{x}}}}{\frac{{{1}}}{{{n}}}}={\frac{{{\left({n}-{1}\right)}!}}{{{\left({1}+{x}\right)}{\left({2}+{x}\right)}\ldots{\left({n}+{x}\right)}}}}$$.

Show that $$a_{2 n}/a_{n} \leq e^{-x/2}/ 2$$  .

For which x > 0 does the generalized ratio test imply convergence of $$\displaystyle{\sum_{{{n}={1}}}^{\infty}}{a}_{{{n}}}$$?

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it Derrick
$$\displaystyle{\frac{{{a}_{{{2}{n}}}}}{{{a}_{{{n}}}}}}\leq{\frac{{{e}^{{-{\frac{{{x}}}{{{2}}}}}}}}{{{2}}}}$$
No, he ratio test does NOT imply the convergence for $$\displaystyle{\sum_{{{n}={1}}}^{\infty}}{a}_{{{n}}}$$.