Solve y'' + 3y' - 10y=x(e^{x} + 1)

Question
Differential equations
asked 2021-01-02
Solve \(y''\ +\ 3y'\ -\ 10y=x(e^{x}\ +\ 1)\)

Answers (1)

2021-01-03
Given \(y''\ +\ 3y'\ -\ 10y=x(e^{x}\ +\ 1)\)
The auxiliary equation is given by \(m^{2}\ +\ 3m\ -\ 10=0\)
solving this we get \(m = -5,\ 2\)
Hence the complimentary function is \(y_{c} = C_{1}e^{-5x}\ +\ C_{2}e^{2x}\)
Now The P.I. of given differential equation is
\(y_{p}=\frac{1}{D^{2}\ +\ 3D\ -\ 10}x(x^{x}\ +\ 1)=\frac{1}{(D\ +\ 5)(D\ -\ 2)}xe^{x}\ +\ 1\)
\(e^{x}\frac{1}{(D\ +\ 1\ +\ 5)(D\ +\ 1\ -\ 2)}x\ +\ \frac{1}{(D\ +\ 5)(D\ -\ 2)}x\)
\(=e^{x}\frac{1}{(D\ +\ 6)(D\ -\ 1)}x\ +\ \frac{1}{(D\ +\ 5)(D\ -\ 2)}x\)
\(=e^{x}\frac{1}{-6\left(1\ +\ \frac{D}{6}\right)(1\ -\ D)}x\ +\ \frac{1}{-10\left(1\ +\ \frac{D}{5}\right)\left(1\ -\ \frac{D}{2}\right)}x\)
\(=\ -\frac{e^{x}}{6}\left(1\ +\ \frac{D}{6}\right)^{-1}(1\ -\ D)^{-1}x\ -\ \frac{1}{10}\left(1\ -\ \frac{D}{5}\right)^{-1}\left(1\ -\ \frac{D}{2}\right)^{-1}x\)
\(=\ -\frac{e^{x}}{6}\left(1\ +\ \frac{D}{6}\ +\ \cdots\right)(1\ +\ D\ +\ D^{2})x\ -\ \frac{1}{10}\left(1\ +\ \frac{D}{5}\ \cdots\right)\left(1\ +\ \frac{D}{2}\ +\ \cdots\right)x\)
\(=\ -\frac{e^{x}}{6}\left(x\ +\ 1\ +\ \frac{1}{6}\right)\ -\ \frac{1}{10}\left(x\ +\ \frac{1}{5}\ +\ \frac{1}{2}\right)\) \(=\ -\frac{e^{x}}{6}\left(x\ +\ \frac{7}{6}\right)\ -\ \frac{1}{10}\left(x\ +\ \frac{7}{10}\right)\)
Hence the general solution is
\(y=y_{c}\ +\ y_{p}=C_{1}e^{-5}x\ +\ C_{2}e^{2}x\ +\ -e_{6}\left(x\ +\ \frac{7}{6}\right)\ -\ \frac{1}{10}\left(x\ +\ \frac{7}{10}\right)\)
0

Relevant Questions

asked 2021-02-15
Solve
\(\left(d^{2}\frac{y}{dt^{2}}\right)\ +\ 7\left(\frac{dy}{dt}\right)\ +\ 10y=4te^{-3}t\) with
\(y(0)=0,\ y'(0)=\ -1\)
asked 2021-01-02
Solve the Differential equations
\(\displaystyle{\frac{{{\left({d}^{{{2}}}\right)}{y}}}{\rbrace}}{\left\lbrace{d}{\left({t}^{{{2}}}\right\rbrace}+{4}{\left({\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}}+{3}{y}={e}^{{-{t}}}\right.}\right.}\)
asked 2020-11-09
solve the Differential equations \(\displaystyle{y}{'''}+{10}{y}{''}+{25}{y}'={0}\)
asked 2021-01-02
Solve this equation pls \(\displaystyle{y}'+{x}{y}={e}^{{x}}\)
\(\displaystyle{y}{\left({0}\right)}={1}\)
asked 2021-02-25
Give the correct answer and solve the given equation: \(\displaystyle{y}\ \text{ - 4y}+{3}{y}={x},{y}_{{1}}={e}^{x}\)
asked 2021-02-21
Solve the given system of differential equations.
\[Dx+Dy+(D+1)z=0\)
Dx+y=e^{t}\)
Dx+y-2z=50\sin(2t)\)
asked 2021-02-05
Solve the differential equations
(1) \(\displaystyle{x}{y}'-{2}{y}={x}^{{3}}{e}^{{x}}\)
(2) \(\displaystyle{\left({2}{y}{\left.{d}{x}\right.}+{\left.{d}{y}\right.}\right)}{e}^{{2}}{x}={0}\)
asked 2020-10-26
Find the differential dy for the given values of x and dx. \(y=\frac{e^x}{10},x=0,dx=0.1\)
asked 2021-02-05
Solve. \(\displaystyle\frac{{\left.{d}{y}\right.}}{{\left.{d}{x}\right.}}+\frac{{3}}{{x}}{y}={27}{y}^{{\frac{{1}}{{3}}}}{1}{n}{\left({x}\right)},{x}{>}{0}\)
asked 2020-12-05
Give the correct answer and solve the given equation:
\(\displaystyle{x}{y}{\left.{d}{x}\right.}-{\left({y}+{2}\right)}{\left.{d}{y}\right.}={0}\)
...