Solve dfrac{d^{2}y}{dt^{2}} - 8dfrac{dy}{dt} + 15y=9te^{3t} with y(0)=5, y'(0)=10

Question
Differential equations
asked 2020-12-06
Solve \(d\frac{d^{2}y}{dt^{2}}\ -\ 8d\frac{dy}{dt}\ +\ 15y=9te^{3t}\ with\ y(0)=5,\ y'(0)=10\)

Answers (1)

2020-12-07
Given:\(\frac{d^{2}y}{dt^{2}}\ -\ 8\frac{dy}{dt}\ +\ 15y=9te^{3t}\)
with \(y(0) = 5,\ y'(0) = 10\)
The auxiliary equation is given by \(m^{2}\ -\ 8m\ +\ 15 = 0\)
solving this we get \(m = 5,\ 3\)
Hence the complimentary function is \(y_{c} = C_{1}e^{-3t}\ +\ C_{2}e^{-5t}\)
Now The P.I. of given differential equation is
\(y_{p}=\frac{1}{D^{2}\ -\ 8D\ +\ 15}9tx^{3}t=\frac{1}{(D\ -\ 3)(D\ -\ 5)}9te^{3}t\)
\(=e^{3}t\frac{1}{(D\ +\ 3\ -\ 3)(D\ +\ 3\ -\ 3)}9t\)
\(=e^{3}t\frac{1}{D(D\ -\ 2)}9t\)
\(=e^{3}t\frac{1}{-2D\left(1\ -\ \frac{D}{2}\right)}9t\)
\(=\ -\frac{e^{3t}}{2}\frac{1}{D}\left(1\ -\ \frac{D}{2}\right)^{-1}(1\ -\ D)^{-1}9t\)
\(=\ -\frac{e^{3t}}{2}\frac{1}{D}\left(1\ +\ \frac{D}{2}\ +\ \cdots\right)9t\)
\(=\ -\frac{e^{-3t}}{2}\frac{1}{D}\left(9t\ +\ \frac{9}{2}\right)\)
\(=\ -\frac{e^{-3t}}{2}\frac{1}{D}\left(\frac{9}{2}t^{2} +\ \frac{9}{2}t\right)\)
\(=\ -\frac{9}{4}e^{-3}t(t\ +\ t^{2})\)
Hence the general solution is \(y=y_{c}\ +\ y{p}=C_{1}v^{-3t}\ +\ C_{2}e^{5t}\ -\ \frac{9}{2}e^{-3}t(t\ +\ t^{2})\)
Now \(y(0)=0\ \Rightarrow\ C_{1}\ +\ e_{2}=5\cdots\)(1)
Also \(y'=3C_{1}e^{-2t}\ +\ 5C_{2}e^{5t}\ -\ \frac{9}{4}[3e^{-3t}(1\ +\ 2t)=3e^{3t}(t\ +\ t^{2})]\)
Hence \(y'(0)=10\ \Rightarrow\ 3C_{1}\ +\ 5C_{2}\ -\ \frac{9}{4}=10\ \Rightarrow\ 12C_{1}\ +\ 20C_{2}=49\ \cdots\)(2) solving (1) and (2) we get
\(C_{1} = \frac{51}{8},\ C_{2} = \frac{-11}{8}\)
Hence the solution is \(y=\frac{51}{8}e^{3t}\ -\ \frac{11}{8}e^{5t}\ -\ \frac{9}{4}e^{-3t}(t\ +\ t^{2})\)
0

Relevant Questions

asked 2021-02-15
Solve
\(\left(d^{2}\frac{y}{dt^{2}}\right)\ +\ 7\left(\frac{dy}{dt}\right)\ +\ 10y=4te^{-3}t\) with
\(y(0)=0,\ y'(0)=\ -1\)
asked 2021-01-02
Solve the Differential equations
\(\displaystyle{\frac{{{\left({d}^{{{2}}}\right)}{y}}}{\rbrace}}{\left\lbrace{d}{\left({t}^{{{2}}}\right\rbrace}+{4}{\left({\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}}+{3}{y}={e}^{{-{t}}}\right.}\right.}\)
asked 2021-02-21
Solve the given system of differential equations.
\[Dx+Dy+(D+1)z=0\)
Dx+y=e^{t}\)
Dx+y-2z=50\sin(2t)\)
asked 2021-02-02
Find \(\displaystyle\frac{{\left.{d}{y}\right.}}{{\left.{d}{t}\right.}}\) for each pair of function \(\displaystyle{y}={x}^{{2}}-{2}{x},{x}={t}^{{2}}+{7}\)
asked 2020-10-26
Find the differential dy for the given values of x and dx. \(y=\frac{e^x}{10},x=0,dx=0.1\)
asked 2020-11-08
A particle moves along the curve \(\displaystyle{x}={2}{t}^{{2}}{y}={t}^{{2}}-{4}{t}\) and z=3t-5 where t is the time.find the components of the velocity at t=1 in the direction i-3j+2k
asked 2021-02-05
Solve. \(\displaystyle\frac{{\left.{d}{y}\right.}}{{\left.{d}{x}\right.}}+\frac{{3}}{{x}}{y}={27}{y}^{{\frac{{1}}{{3}}}}{1}{n}{\left({x}\right)},{x}{>}{0}\)
asked 2021-01-08
Solve the Differential equations \(\displaystyle{\left({D}^{{3}}−{3}{D}+{2}\right)}{y}={0}\)
asked 2020-12-05
Give the correct answer and solve the given equation:
\(\displaystyle{x}{y}{\left.{d}{x}\right.}-{\left({y}+{2}\right)}{\left.{d}{y}\right.}={0}\)
asked 2021-02-26
Make and solve the given equation \(x\ dx\ +\ y\ dy=a^{2}\frac{x\ dy\ -\ y\ dx}{x^{2}\ +\ y^{2}}\)
...