Question

The National Weather Service computes the wind chill index using the following formula:What do i need to do to define the windChill?

Other
ANSWERED
asked 2021-08-12
So, this is the problem:
The National Weather Service computes the wind chill index using the following formula:
35.74 + 0.6215T – 35.75(V0.16) + 0.4275T(V0.16) Where T is the temperature in degrees Fahrenheit, and V is the wind speed in miles per hour.
Write a program that prints a nicely formatted table of wind chill values. Rows should represent wind speed for 0 to 50 in 5-mph increments, and the columns represent temperatures from -20 to +60 in 10 degree increments. Create a function for the wind chill with the following specifications: windChill(t, v) Note: this formula only applies for wind speeds in excess of 3 miles per hour.
This is what I have so far:
def windChill(t,v): if < 3
def main():
print("Wind Chill Table")
print("Temperature".center(70))
print ("MPH|",end='')
temps = list(range(-20,61,10))
for t in temps:
print("{0:5}".format(t),end= ' ')
print("\n---+" + 55 * '-')
for vel in range(0,51,5):
print("{0:3}|".format(vel), end=' ')
for temp in temps:
print("{0:5.0f}".format(windChill(temp,vel)), end=' ')
main()
What do i need to do to define the windChill (the main must remain the same)?

Answers (1)

2021-08-13
if v > 3:
\(\displaystyle{t}={\left({35.74}+{0.6215}\cdot{t}\right)}-{\left({35.75}\cdot{\left({v}\cdot{0.16}\right)}\right)}+{\left({0.4275}\cdot{t}\cdot{\left({v}\cdot{0.16}\right)}\right)}\)
You should have that inside your windChill function and your windChill function should return t. I hope this helps!
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-06-05
Use the following Normal Distribution table to calculate the area under the Normal Curve (Shaded area in the Figure) when \(Z=1.3\) and \(H=0.05\);
Assume that you do not have vales of the area beyond \(z=1.2\) in the table; i.e. you may need to use the extrapolation.
Check your calculated value and compare with the values in the table \([for\ z=1.3\ and\ H=0.05]\).
Calculate your percentage of error in the estimation.
How do I solve this problem using extrapolation?
\(\begin{array}{|c|c|}\hline Z+H & Prob. & Extrapolation \\ \hline 1.20000 & 0.38490 & Differences \\ \hline 1.21000 & 0.38690 & 0.00200 \\ \hline 1.22000 & 0.38880 & 0.00190 \\ \hline 1.23000 & 0.39070 & 0.00190 \\ \hline 1.24000 & 0.39250 & 0.00180 \\ \hline 1.25000 & 0.39440 & 0.00190 \\ \hline 1.26000 & 0.39620 & 0.00180 \\ \hline 1.27000 & 0.39800 & 0.00180 \\ \hline 1.28000 & 0.39970 & 0.00170 \\ \hline 1.29000 & 0.40150 & 0.00180 \\ \hline 1.30000 & 0.40320 & 0.00170 \\ \hline 1.31000 & 0.40490 & 0.00170 \\ \hline 1.32000 & 0.40660 & 0.00170 \\ \hline 1.33000 & 0.40830 & 0.00170 \\ \hline 1.34000 & 0.41010 & 0.00180 \\ \hline 1.35000 & 0.41190 & 0.00180 \\ \hline \end{array}\)
asked 2021-06-01
What formula do we need, in addition to: \(\displaystyle\frac{{d}}{{\left.{d}{x}\right.}}{\left({x}^{{n}}\right)}={n}{x}^{{{n}-{1}}}\)
\(\displaystyle\frac{{d}}{{\left.{d}{x}\right.}}{\left({c}{u}\right)}={c}{d}\frac{{u}}{{\left.{d}{x}\right.}}\)
\(\displaystyle\frac{{d}}{{\left.{d}{x}\right.}}{\left({u}_{{1}}+{u}_{{2}}+\ldots+{u}_{{n}}\right)}={d}\frac{{u}_{{1}}}{{\left.{d}{x}\right.}}+{d}\frac{{u}_{{2}}}{{\left.{d}{x}\right.}}+\ldots+{d}\frac{{u}_{{n}}}{{\left.{d}{x}\right.}}\) to differentiate rational functions?
asked 2021-03-09

What other information do you need in order to prove the triangles congruent using the SAS Congruence Postulate?
image
A)\(\displaystyle\angle{B}{A}{C}\stackrel{\sim}{=}\angle{D}{A}{C}\)
B)\(\displaystyle\overline{{{A}{C}}}\stackrel{\sim}{=}\overline{{{B}{D}}}\)
C)\(\displaystyle\angle{B}{C}{A}\stackrel{\sim}{=}\angle{D}{C}{A}\)
D)\(\displaystyle\overline{{{A}{C}}}\stackrel{\sim}{=}\overline{{{B}{D}}}\)

asked 2021-04-15

I have to do this problem using the method of sections image

...