asked 2021-08-14

\(\begin{matrix}\text{Year}&\text{Subscribers}&\text{Average Local}\\ \text{ }\ &\text{(millions)}&\text{Monthly Bill (\$)}\\ \text{2000}&\text{109.5}&\text{45.27}\\ \text{2001}&\text{128.4}&\text{47.37}\\ \text{2002}&\text{140.8}&\text{48.40}\\ \text{2003}&\text{158.7}&\text{49.91}\\ \text{2004}&\text{182.1}&\text{50.64}\\ \text{2005}&\text{207.9}&\text{49.98}\\ \text{2006}&\text{233.0}&\text{50.56}\\ \text{2007}&\text{255.4}&\text{49.79}\\ \text{2008}&\text{262.7}&\text{50.07}\\ \text{2009}&\text{276.6}&\text{48.16}\\ \text{2010}&\text{300.5}&\text{47.21}\\ \end{matrix}\)

One of the scatter plots clearly suggests a linear model. Use the points at t = 10 and t = 20 to find a model in the form y=mx+b.y=mx+b.

asked 2021-08-10

\(\begin{matrix}\text{Year}&\text{Subscribers}&\text{Average Local}\\ \ \text{ }\ &\text{(millions)}&\text{Monthly Bill (\$)}\\ \text{2000}&\text{109.5}&\text{45.27}\\ \text{2001}&\text{128.4}&\text{47.37}\\ \text{2002}&\text{140.8}&\text{48.40}\\ \text{2003}&\text{158.7}&\text{49.91}\\ \text{2004}&\text{182.1}&\text{50.64}\\ \text{2005}&\text{207.9}&\text{49.98}\\ \text{2006}&\text{233.0}&\text{50.56}\\ \text{2007}&\text{255.4}&\text{49.79}\\ \text{2008}&\text{262.7}&\text{50.07}\\ \text{2009}&\text{276.6}&\text{48.16}\\ \text{2010}&\text{300.5}&\text{47.21}\\ \end{matrix}\)

One of the scatter plots clearly suggests a linear model. Use the points at \(t = 10\) and \(t = 20\) to find a model in the form \(y=mx+b\).

asked 2021-08-06

\(\begin{matrix} {Year} & {Subscribers} & {Average Monthly}\\ { } & {(millions)} & {Revenue per Subscriber Unit ($)}\\ {2000} & {109.5} & {48.55}\\ {2001} & {128.4} & {49.79}\\ {2002} & {140.8} & {51.00}\\ {2003} & {158.7} & {51.55}\\ {2004} & {182.1} & {52.54}\\ {2005} & {207.9} & {50.65}\\ {2006} & {233.0} & {49.07}\\ {2007} & {255.4} & {49.26}\\ {2008} & {270.3} & {48.87}\\ {2009} & {285.6} & {47.97}\\ {2010} & {296.3} & {47.53}\\ {2011} & {316.0} & {46.11}\\ {2012} & {326.5} & {48.99}\\ {2013} & {335.7} & {48.79}\\ {2014} & {355.4} & {46.64}\\ {2015} & {377.9} & {44.65}\\ \end{matrix}\)

One of the scatter plots suggests a linear model. Use the points at t = 0 and t = 15 to find a model in the form y = mx + b.

asked 2021-05-23

Table shows the number of wireless service subscribers in the United States and their average monthly bill in the years from 2000 through 2015.

\(\begin{matrix} \text{Year} & \text{Subscribers} & \text{Average Monthly}\\ { } & \text{(millions)} & \text{Revenue per Subscriber Unit ()}\\ {2000} & {109.5} & {48.55}\\ {2001} & {128.4} & {49.79}\\ {2002} & {140.8} & {51.00}\\ {2003} & {158.7} & {51.55}\\ {2004} & {182.1} & {52.54}\\ {2005} & {207.9} & {50.65}\\ {2006} & {233.0} & {49.07}\\ {2007} & {255.4} & {49.26}\\ {2008} & {270.3} & {48.87}\\ {2009} & {285.6} & {47.97}\\ {2010} & {296.3} & {47.53}\\ {2011} & {316.0} & {46.11}\\ {2012} & {326.5} & {48.99}\\ {2013} & {335.7} & {48.79}\\ {2014} & {355.4} & {46.64}\\ {2015} & {377.9} & {44.65}\\ \end{matrix}\)

One of the scatter plots suggests a linear model. Use the points at t = 0 and t = 15 to find a model in the form y = mx + b.

asked 2021-06-11

Table shows the number of wireless service subscribers in the United States and their average monthly bill in the years from 2000 through 2015

. \(\begin{matrix} \text{Year} & \text{Subscribers} & \text{Average Monthly}\\ \text{ } & \text{(millions)} & \text{Revenue per Subscriber Unit }\\ \text{2000} & \text{109.5} & \text{48.55}\\ \text{2001} & \text{128.4} & \text{49.79}\\ \text{2002} & \text{140.8} & \text{51.00}\\ \text{2003} & \text{158.7} & \text{51.55}\\ \text{2004} & \text{182.1} & \text{52.54}\\ \text{2005} & \text{207.9} & \text{50.65}\\ \text{2006} & \text{233.0} & \text{49.07}\\ \text{2007} & \text{255.4} & \text{49.26}\\ \text{2008} & \text{270.3} & \text{48.87}\\ \text{2009} & \text{285.6} & \text{47.97}\\ \text{2010} & \text{296.3} & \text{47.53}\\ \text{2011} & \text{316.0} & \text{46.11}\\ \text{2012} & \text{326.5} & \text{48.99}\\ \text{2013} & \text{335.7} & \text{48.79}\\ \text{2014} & \text{355.4} & \text{46.64}\\ \text{2015} & \text{377.9} & \text{44.65}\\ \end{matrix}\)

One of the scatter plots suggests a linear model. Use the points at t = 0 and t = 15 to find a model in the form y = mx + b.

asked 2021-06-02

The table shows the populations P (in millions) of the United States from 1960 to 2000.
Year 1960 1970 1980 1990 2000 Popupation, P 181 205 228 250 282

(a) Use the 1960 and 1970 data to find an exponential model P1 for the data. Let t=0 represent 1960. (c) Use a graphing utility to plot the data and graph models P1 and P2 in the same viewing window. Compare the actual data with the predictions. Which model better fits the data? (d) Estimate when the population will be 320 million.

(a) Use the 1960 and 1970 data to find an exponential model P1 for the data. Let t=0 represent 1960. (c) Use a graphing utility to plot the data and graph models P1 and P2 in the same viewing window. Compare the actual data with the predictions. Which model better fits the data? (d) Estimate when the population will be 320 million.

asked 2021-08-13

The table shows the annual service revenues R1 in billions of dollars for the cellular telephone industry for the years 2000 through 2006.

\(\begin{matrix}
Year&2000&2001&2002&2003&2004&2005&2006\\
R_1&52.5&65.3&76.5&87.6&102.1&113.5&125.5
\end{matrix}\)

(a) Use the regression capabilities of a graphing utility to find an exponential model for the data. Let t represent the year, with t=10 corresponding to 2000. Use the graphing utility to plot the data and graph the model in the same viewing window.

(b) A financial consultant believes that a model for service revenues for the years 2010 through 2015 is \(\displaystyle{R}{2}={6}+{13}+{13},{9}^{{0.14}}{t}\). What is the difference in total service revenues between the two models for the years 2010 through 2015?