For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. When necessary, round values to five decimal places.

nicekikah 2021-08-08 Answered

For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. Observe the shape of the scatter diagram to determine whether the data is best described by an exponential, logarithmic, or logistic model. Then use the appropriate regression feature to find an equation that models the data. When necessary, round values to five decimal places.
\(\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|} \hline x & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ \hline \hline f(x) & 13.98 & 17.84 & 20.01 & 22.7 & 24.1 & 26.15 & 27.37 & 28.38 & 29.97 & 31.07 & 31.43 \\ \hline \end{array}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

berggansS
Answered 2021-08-09 Author has 14198 answers

Step 1
Remember that regression analysis is the process of looking for a best fit of model for a set of data. This can be done on a graphing utility as follows:
1. Press [STAT], the input corresponging x-values of data in L1, and y-values of data in L2.
2. Use [STATPLOT] to observe a scatterplot of the data.
3. Press [STAT], then [CALC] then [ExpReg]/[LnReg]/[Logistic]. This will show you a function in either the form of an exponential, a logarithmic or a logistic model.
4. Graph this equation on the same window as the scatterplot to see if it fits the data.
Step 2
1. Press [STAT], the input corresponging x-values of data in L1, and y-values of data in L2.
2. Use [STATPLOT] to observe a scatterplot of the data.
image
Step 3
Based on the plots of the points, it can be exponential or logarithmic. However, upon checking both regression analysis, the one with the closest value of \(\displaystyle{r}^{{{2}}}\) to 1 is logarithmic, hence, its formula is \(\displaystyle{y}={0.89478}+{12.03885}{\ln{{\left({x}\right)}}}\). The graph of which is below:
image

Have a similar question?
Ask An Expert
48
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-08-01

For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. Observe the shape of the scatter diagram to determine whether the data is best described by an exponential, logarithmic, or logistic model. Then use the appropriate regression feature to find an equation that models the data. When necessary, round values to five decimal places.
\(\begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline f(x) & 20 & 21.6 & 29.2 & 36.4 & 46.6 & 55.7 & 72.6 & 87.1 & 107.2 & 138.1 \\ \hline \end{array}\)

asked 2021-08-06

For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. Observe the shape of the scatter diagram to determine whether the data is best described by an exponential, logarithmic, or logistic model. Then use the appropriate regression feature to find an equation that models the data. When necessary, round values to five decimal places.
\(\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & 0 & 0.5 & 1 & 1.5 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline f(x) & 2.2 & 2.9 & 3.9 & 4.8 & 6.4 & 9.3 & 12.3 & 15 & 16.2 & 17.3 & 17.9 \\ \hline \end{array}\)

asked 2021-02-18

For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. Observe the shape of the scatter diagram to determine whether the data is best described by an exponential, logarithmic, or logistic model. Then use the appropriate regression feature to find an equation that models the data. When necessary, round values to five decimal places.
\(\begin{array}{|c|c|}\hline x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline f(x) & 409.4 & 260.7 & 170.4 & 110.6 & 74 & 44.7 & 32.4 & 19.5 & 12.7 & 8.1 \\ \hline \end{array}\)

asked 2021-08-10

The popularity of fads and fashions often decays exponentially. One example is ticket sales for a popular movie. The table shows the total money spent per weekend on tickets in the United States and Canada for the movie The Da Vinci Code.
\(\begin{matrix} \text{Weekend in 2006} & \text{Ticket Sales (millions)}\\ \text{May 19—May 21} & \text{77.1}\\ \text{May 26—May 28} & \text{34.0}\\ \text{June 2—June 4} & \text{18.6}\\ \text{June 9—June 11} & \text{10.4}\\ \text{June 16—June 18} & \text{5.3}\\ \text{June 23—June 25} & \text{4.1}\\ \text{June 30—July 2} & \text{2.3}\\ \end{matrix}\)
a) Use a graphing calculator to create a scatter plot of the data.

b) Draw a quadratic curve of best fit. - Press STAT, cursor over to display the CALC menu, and select 5:QuadReg. - Press VARS, and cursor over to display the Y-VARS menu. Select 1:Function and then select 1:Y1. - Press ENTER to get the QuadReg screen, and press GRAPH.

c) Draw an exponential curve of best fit. - Press STAT, cursor over to display the CALC menu, and select 0:ExpReg. - Press VARS, and cursor over to display the Y-VARS menu. Select 1:Function and then select 2:Y2. - Press ENTER to get the ExpReg screen, and press GRAPH.

d) Examine the two curves. Which curve of best fit best models the data?

asked 2021-05-01

Enter the data for Spendco into your graphing calculator. Enter the years since 2000 as the x-values and the corresponding daily hits in thousands as the y-values. a. To find the exponential equation that models the data, use the exponential regression feature of your calculator. The calculator should return values for a and b. Write these values below, rounding to the nearest hundredth. a= b. Write the exponential equation in the form \(\displaystyle{y}={a}{b}^{{x}}\).
c. Use the exponential equation to predict the number of daily hits for Spendco in 2015.

asked 2021-06-20

Use the two-way table of data from another student survey to answer the following question.
\(\begin{array}{|c|c|} \hline & \text{Like Aerobic Excercise} \\ \hline & \text{Yes} & \text{No} & \text{Total} \\ \hline \text{Like Weight Lifting} \\ \hline \text{Yes} & 7 & 14 & 21 \\ \hline \text{No} & 12 & 7 & 19 \\ \hline \text{Total} & 19 & 21 & 40 \\ \hline \end{array}\)
Find the conditional relative frequency that a student likes to lift weights, given that the student likes aerobics.

asked 2021-02-25

The values of two functions, f and g, are given in a table. One, both, or neither of them may be exponential. Give the exponential models for those that are.
f(x)-?
g(x)-??
\(\begin{array}{|l|l|l|}\hline X&-2&-1&0&1&2\\\hline f(x)&1.125&2.25&4.5&9&18\\\hline g(x)&16&8&4&2&1\\\hline\end{array}\)

...