The answer is given below

Elberte

Answered 2021-08-15
Author has **27522** answers

asked 2021-08-14

Compute the derivatives.

\(\displaystyle{\frac{{{d}^{{{6}}}}}{{{\left.{d}{x}\right.}^{{{6}}}}}}{\left({\cos{{h}}}{x}\right)}\)

\(\displaystyle{\frac{{{d}^{{{6}}}}}{{{\left.{d}{x}\right.}^{{{6}}}}}}{\left({\cos{{h}}}{x}\right)}\)

asked 2021-05-31

Compute the following derivatives

\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left[{x}^{{{4}}}{{\tan}^{{{3}}}{\left({x}^{{{2}}}\right)}}\right]}\)

\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left[{x}^{{{4}}}{{\tan}^{{{3}}}{\left({x}^{{{2}}}\right)}}\right]}\)

asked 2021-05-21

Compute the following derivatives

\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left[{\frac{{{\sin{{x}}}}}{{{1}+{\cos{{x}}}}}}\right]}\)

\(\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left[{\frac{{{\sin{{x}}}}}{{{1}+{\cos{{x}}}}}}\right]}\)

asked 2021-10-14

compute the given derivatives d/dx (2x)`x= 2

asked 2021-10-17

asked 2021-08-13

Find the derivatives.

by differentiating the integral directly.

\(\displaystyle{\frac{{{d}}}{{{d}{0}}}}{\int_{{{0}}}^{{{\tan{{0}}}}}}{{\sec}^{{{2}}}{y}}{\left.{d}{y}\right.}\)

by differentiating the integral directly.

\(\displaystyle{\frac{{{d}}}{{{d}{0}}}}{\int_{{{0}}}^{{{\tan{{0}}}}}}{{\sec}^{{{2}}}{y}}{\left.{d}{y}\right.}\)

asked 2021-05-02

Compute the following derivatives

\(\displaystyle{\frac{{{d}}}{{{d}{s}}}}{\left[{\left({s}^{{{3}}}-{7}{s}\right)}^{{{\frac{{{8}}}{{{3}}}}}}\right]}\)

\(\displaystyle{\frac{{{d}}}{{{d}{s}}}}{\left[{\left({s}^{{{3}}}-{7}{s}\right)}^{{{\frac{{{8}}}{{{3}}}}}}\right]}\)