The change - of - coordinate matrix from mathscr{B} = left{begin{bmatrix}3-14end{bmatrix}begin{bmatrix}20 -5 end{bmatrix}begin{bmatrix}8-27 end{bmatrix}right} to the standard basis in RR^{n}.

Question
Alternate coordinate systems
asked 2021-02-25
The change - of - coordinate matrix from \(\mathscr{B} = \left\{\begin{bmatrix}3\\-1\\4\\\end{bmatrix}\begin{bmatrix}2\\0\\ -5 \\\end{bmatrix}\begin{bmatrix}8\\-2\\7\\ \end{bmatrix}\right\}\)
to the standard basis in \(RR^{n}.\)

Answers (1)

2021-02-26
The change - of - coordinates matrix from a basis \(\mathscr{B} = {b_{1}, b_{2},..., b_{n}}\)
to the standadr matrix in \(RR^{n}\) is given as,
\(P_\mathscr{B}=[b_{1} b_{2},...,b_{n}]\)
Here, n is the number of vectors in a basis.
There are three vectors in the given basis,
The given basis is c\(\mathscr{B} = \left\{\begin{bmatrix}3\\-1\\4\\\end{bmatrix}\begin{bmatrix}2\\0\\ -5 \\\end{bmatrix}\begin{bmatrix}8\\-2\\7\\ \end{bmatrix}\right\}\).
Thus, the change-of-coordinates matrix from \(\mathscr{B}\)
to the standard basis in \(RR^{3}\) is,
\(P_{\mathscr{B}} = [b_{1} b_{2} b_{3}]\)
\(\begin{bmatrix}3 & 2 & 8 \\-1 & 0 & -2\\ 4 & -5 & 7 \end{bmatrix}\)
Therefore, the change-of-coordinates matrix is \(\begin{bmatrix}3 & 2 & 8 \\-1 & 0 & -2\\ 4 & -5 & 7 \end{bmatrix}\)
0

Relevant Questions

asked 2020-10-18
Given the elow bases for R^2 and the point at the specified coordinate in the standard basis as below, (40 points) \(\displaystyle{B}{1}=\le{f}{t}{\left\lbrace{\left({1},{0}\right)},{\left({0},{1}\right)}{r}{i}{g}{h}{t}\right\rbrace}&{M}{S}{K}{B}{2}={\left({1},{2}\right)},{\left({2},-{1}\right)}{r}{i}{g}{h}{t}\rbrace{\left({1},{7}\right)}={3}^{\cdot}{\left({1},{2}\right)}-{\left({2},{1}\right)}{N}{S}{K}{B}{2}={\left({1},{1}\right)},{\left(-{1},{1}\right)}{\left({3},{7}={5}^{\cdot}{\left({1},{1}\right)}+{2}^{\cdot}{\left(-{1},{1}\right)}{N}{S}{K}{B}{2}={\left({1},{2}\right)},{\left({2},{1}\right)}{\left({0},{3}\right)}={2}^{\cdot}{\left({1},{2}\right)}-{2}^{\cdot}{\left({2},{1}\right)}{N}{S}{K}{\left({8},{10}\right)}={4}^{\cdot}{\left({1},{2}\right)}+{2}^{\cdot}{\left({2},{1}\right)}{N}{S}{K}{B}{2}={\left({1},{2}\right)},{\left(-{2},{1}\right)}{\left({0},{5}\right)}={N}{S}{K}{\left({1},{7}\right)}=\right.}\) a. Use graph technique to find the coordinate in the second basis. (10 points) b. Show that each basis is orthogonal. (5 points) c. Determine if each basis is normal. (5 points) d. Find the transition matrix from the standard basis to the alternate basis. (15 points)
asked 2021-01-31
Let \(\displaystyle{B}=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash-{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace}{\quad\text{and}\quad}{C}=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace}\) be bases for R^2. Find the change-of-coordinate matrix from B to C.
asked 2021-01-19
Let \(\displaystyle{B}=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash-{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace}{\quad\text{and}\quad}{C}=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace}\)
be bases for\(\displaystyle{R}^{{2}}.\) Change-of-coordinate matrix from C to B.
asked 2021-01-31
(a) Find the bases and dimension for the subspace \(\displaystyle{H}=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}{a}+{6}{b}-{c}\backslash{6}{a}-{2}{b}-{2}{c}\backslash-{9}{a}+{5}{b}+{3}{c}\backslash-{3}{a}+{b}+{c}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{a},{b},{c}\in{R}{r}{i}{g}{h}{t}\right\rbrace}\) (b) Let be bases for a vector space V,and suppose (i) Find the change of coordinate matrix from B toD. (ii) Find \(\displaystyle{\left[{x}\right]}_{{D}}{f}{\quad\text{or}\quad}{x}={3}{b}_{{1}}-{2}{b}_{{2}}+{b}_{{3}}\)
asked 2021-01-19
Consider the following vectors in \(\displaystyle{R}^{{4}}:\) \(\displaystyle{v}_{{1}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{v}_{{2}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{v}_{{3}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{v}_{{4}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{0}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) a. Explain why \(\displaystyle{B}=\le{f}{t}{\left\lbrace{v}_{{1}},{v}_{{2}},{v}_{{3}},{v}_{{4}}{r}{i}{g}{h}{t}\right\rbrace}\)
forms a basis for \(\displaystyle{R}^{{4}}.\) b. Explain how to convert \(\displaystyle\le{f}{t}{\left\lbrace{x}{r}{i}{g}{h}{t}\right\rbrace}_{{B}},\) the representation of a vector x in the coordinates defined by B, into x, its representation in the standard coordinate system. c. Explain how to convert the vector x into,\(\displaystyle{\left\lbrace{x}\right\rbrace}_{{B}},\) its representation in the coordinate system defined by B
asked 2020-10-18
Given the full and correct answer the two bases of \(\displaystyle{B}{1}=\le{f}{t}{\left\lbrace{\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{2}\backslash{1}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)},{\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{3}\backslash{2}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}{r}{i}{g}{h}{t}\right\rbrace}\)
\(\displaystyle{B}_{{2}}=\le{f}{t}{\left\lbrace{\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{3}\backslash{1}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)},{\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{7}\backslash{2}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}{r}{i}{g}{h}{t}\right\rbrace}\)
find the change of basis matrix from \(\displaystyle{B}_{{1}}\to{B}_{{2}}\) and next use this matrix to covert the coordinate vector
\(\displaystyle{o}{v}{e}{r}\rightarrow{\left\lbrace{v}\right\rbrace}_{{{B}_{{1}}}}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{2}\backslash-{1}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}\) of v to its coodirnate vector
\(\displaystyle{o}{v}{e}{r}\rightarrow{\left\lbrace{v}\right\rbrace}_{{{B}_{{2}}}}\)
asked 2020-11-14
Consider the bases \(\displaystyle{B}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}\backslash{5}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}{o}{f}{R}^{{2}}{\quad\text{and}\quad}{C}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}{o}{f}{R}^{{3}}\).
and the linear maps PSKS \in L (R^2, R^3) and T \in L(R^3, R^2) given given (with respect to the standard bases) by \(\displaystyle{\left[{S}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}&-{1}\backslash{5}&-{3}\backslash-{3}&{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{\quad\text{and}\quad}{\left[{T}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&-{1}&{1}\backslash{1}&{1}&-{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) Find each of the following coordinate representations. \(\displaystyle{\left({b}\right)}{\left[{S}\right]}_{{{E},{C}}}\)
\(\displaystyle{\left({c}\right)}{\left[{S}\right]}_{{{B},{C}}}\)
asked 2021-02-25
Consider the bases \(\displaystyle{B}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}\backslash{3}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}\backslash{5}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\right)}{o}{f}{R}^{{2}}{\quad\text{and}\quad}{C}={\left({b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{c}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\right)}{o}{f}{R}^{{3}}\).
and the linear maps PSKS \in L (R^2, R^3) and T \in L(R^3, R^2) given given (with respect to the standard bases) by \(\displaystyle{\left[{S}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{2}&-{1}\backslash{5}&-{3}\backslash-{3}&{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{\quad\text{and}\quad}{\left[{T}\right]}_{{{E},{E}}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&-{1}&{1}\backslash{1}&{1}&-{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\) Find each of the following coordinate representations. \(\displaystyle{\left({a}\right)}{\left[{S}\right]}_{{{B},{E}}}\)
asked 2021-02-21
All bases considered in these are assumed to be ordered bases. In Exercise, compute the coordinate vector of v with respect to the giving basis S for V. V is \(\displaystyle{R}^{{2}},{S}=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}\backslash{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}\backslash{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace},{v}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{3}\backslash-{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}\\)
asked 2021-02-25
All bases considered in these are assumed to be ordered bases. In Exercise, compute coordinate vector v with respect to the giving basis S for V. V is \(\displaystyle{M}_{{22}},{S}=\le{f}{t}{\left\lbrace{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&-{1}\backslash{0}&{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{0}&{1}\backslash{1}&{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&{0}\backslash{0}&-{1}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace},{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&{0}\backslash-{1}&{0}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{r}{i}{g}{h}{t}\right\rbrace},{v}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{1}&{3}\backslash-{2}&{2}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}.\)
...