Showing the provided task:

Jozlyn

Answered 2021-08-10
Author has **22858** answers

asked 2021-08-07

Sketch the following conic sections:

a)\(\displaystyle{y}^{{2}}-{4}{y}+{8}-{4}{x}^{{2}}={8}\)

b)\(\displaystyle{y}^{{2}}-{4}{y}-{4}{x}^{{2}}={8}\)

c)\(\displaystyle{3}{\left({y}-{5}\right)}^{{2}}-{7}{\left({x}+{1}\right)}^{{2}}={1}\)

a)\(\displaystyle{y}^{{2}}-{4}{y}+{8}-{4}{x}^{{2}}={8}\)

b)\(\displaystyle{y}^{{2}}-{4}{y}-{4}{x}^{{2}}={8}\)

c)\(\displaystyle{3}{\left({y}-{5}\right)}^{{2}}-{7}{\left({x}+{1}\right)}^{{2}}={1}\)

asked 2020-11-08

The type of conic sections for the nondegenerate equations given below.

a) \(\displaystyle{8}{x}^{{{2}}}\ -\ {2}{y}^{{{2}}}\ -\ {3}{x}\ +\ {2}{y}\ -\ {6}={0} \ \)

b) \(\displaystyle-{6}{y}^{{{2}}}\ +\ {4}{x}\ -\ {12}{y}\ -\ {24}={0}\)

c) \(\displaystyle-{9}{x}^{{{2}}}\ -\ {4}{y}^{{{2}}}\ -\ {18}{x}\ +\ {12}{y}={0}\)

asked 2020-11-24

\(\displaystyle{\left({a}\right)}{4}{x}^{2}-{9}{y}^{2}={12}{\left({b}\right)}-{4}{x}+{9}{y}^{2}={0}\)

\(\displaystyle{\left({c}\right)}{4}{y}^{2}+{9}{x}^{2}={12}{\left({d}\right)}{4}{x}^{3}+{9}{y}^{3}={12}\)

asked 2020-10-18

The type of conic sections for the nondegenerate equations given below.

a) \(\displaystyle{6}{x}^{{{2}}}\ +\ {3}{x}\ +\ {10}{y}={10}{y}^{{{2}}}\ +\ {8}\)

b) \(\displaystyle{3}{x}^{{{2}}}\ +\ {18}{x}{y}={5}{x}\ +\ {2}{y}\ +\ {9}\)

c) \(\displaystyle{4}{x}^{{{2}}}\ +\ {8}{x}\ -\ {5}=\ -{y}^{{{2}}}\ +\ {6}{y}\ +\ {3}\)

asked 2021-08-08

The type of conic sections for the nondegenerate equations given below.

a) \(\displaystyle{0.1}{x}^{{{2}}}+{0.6}{x}-{1.6}={0.2}{y}-{0.1}{y}^{{{2}}}\)

b) \(\displaystyle{2}{x}^{{{2}}}-{7}{x}{y}=-{y}^{{{2}}}+{4}{x}-{2}{y}-{1}\)

c) \(\displaystyle{8}{x}+{2}{y}={y}^{{{2}}}+{4}\)

a) \(\displaystyle{0.1}{x}^{{{2}}}+{0.6}{x}-{1.6}={0.2}{y}-{0.1}{y}^{{{2}}}\)

b) \(\displaystyle{2}{x}^{{{2}}}-{7}{x}{y}=-{y}^{{{2}}}+{4}{x}-{2}{y}-{1}\)

c) \(\displaystyle{8}{x}+{2}{y}={y}^{{{2}}}+{4}\)

asked 2021-08-15

Sketch the following conic sections:

\(\displaystyle{4}^{{{2}}}-{4}{y}+{8}-{4}{x}^{{{2}}}={0}\)

\(\displaystyle{4}^{{{2}}}-{4}{y}+{8}-{4}{x}^{{{2}}}={0}\)

asked 2021-08-09

Find the equation of the graph for each conic in standard form. Identify the conic, the center, the vertex, the co-vertex, the focus (foci), major axis, minor axis, \(\displaystyle{a}^{{2}},{b}^{{2}}\), and \(\displaystyle{c}^{{2}}\)?. For hyperbola, find the asymptotes. Sketch the graph. \(\displaystyle{y}^{{2}}+{4}{y}-{2}{x}+{6}={0}\)