Show that the equation represents a conic section (a) x^2 – 2x – 4y^2 – 12y = -8 (b) 2x^2 + 4x - 5y + 7 = 0 (c) 8a^2 + 8x + 2y^2 – 20y = 12

bobbie71G 2021-08-09 Answered
Show that the equation represents a conic section. Sketch the conic section, and indicate all pertinent information (such as foci, directrix, asymptotes, and so on). \(\displaystyle{\left({a}\right)}{x}^{{2}}–{2}{x}–{4}{y}^{{2}}–{12}{y}=-{8}{\left({b}\right)}{2}{x}^{{2}}+{4}{x}-{5}{y}+{7}={0}{\left({c}\right)}{8}{a}^{{2}}+{8}{x}+{2}{y}^{{2}}–{20}{y}={12}\)
image

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Jozlyn
Answered 2021-08-10 Author has 22858 answers

Showing the provided task:
image
image
image
image
image

Not exactly what you’re looking for?
Ask My Question
30
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-08-07
Sketch the following conic sections:
a)\(\displaystyle{y}^{{2}}-{4}{y}+{8}-{4}{x}^{{2}}={8}\)
b)\(\displaystyle{y}^{{2}}-{4}{y}-{4}{x}^{{2}}={8}\)
c)\(\displaystyle{3}{\left({y}-{5}\right)}^{{2}}-{7}{\left({x}+{1}\right)}^{{2}}={1}\)
asked 2020-11-08

The type of conic sections for the nondegenerate equations given below.

a) \(\displaystyle{8}{x}^{{{2}}}\ -\ {2}{y}^{{{2}}}\ -\ {3}{x}\ +\ {2}{y}\ -\ {6}={0} \ \)

b) \(\displaystyle-{6}{y}^{{{2}}}\ +\ {4}{x}\ -\ {12}{y}\ -\ {24}={0}\)

c) \(\displaystyle-{9}{x}^{{{2}}}\ -\ {4}{y}^{{{2}}}\ -\ {18}{x}\ +\ {12}{y}={0}\)

asked 2020-11-24

Decide if the equation defines an ellipse, a hyperbola, a parabola, or no conic section at all.
\(\displaystyle{\left({a}\right)}{4}{x}^{2}-{9}{y}^{2}={12}{\left({b}\right)}-{4}{x}+{9}{y}^{2}={0}\)
\(\displaystyle{\left({c}\right)}{4}{y}^{2}+{9}{x}^{2}={12}{\left({d}\right)}{4}{x}^{3}+{9}{y}^{3}={12}\)

asked 2020-10-18

The type of conic sections for the nondegenerate equations given below.

a) \(\displaystyle{6}{x}^{{{2}}}\ +\ {3}{x}\ +\ {10}{y}={10}{y}^{{{2}}}\ +\ {8}\)

b) \(\displaystyle{3}{x}^{{{2}}}\ +\ {18}{x}{y}={5}{x}\ +\ {2}{y}\ +\ {9}\)

c) \(\displaystyle{4}{x}^{{{2}}}\ +\ {8}{x}\ -\ {5}=\ -{y}^{{{2}}}\ +\ {6}{y}\ +\ {3}\)

asked 2021-08-08
The type of conic sections for the nondegenerate equations given below.
a) \(\displaystyle{0.1}{x}^{{{2}}}+{0.6}{x}-{1.6}={0.2}{y}-{0.1}{y}^{{{2}}}\)
b) \(\displaystyle{2}{x}^{{{2}}}-{7}{x}{y}=-{y}^{{{2}}}+{4}{x}-{2}{y}-{1}\)
c) \(\displaystyle{8}{x}+{2}{y}={y}^{{{2}}}+{4}\)
asked 2021-08-15
Sketch the following conic sections:
\(\displaystyle{4}^{{{2}}}-{4}{y}+{8}-{4}{x}^{{{2}}}={0}\)
asked 2021-08-09
Find the equation of the graph for each conic in standard form. Identify the conic, the center, the vertex, the co-vertex, the focus (foci), major axis, minor axis, \(\displaystyle{a}^{{2}},{b}^{{2}}\), and \(\displaystyle{c}^{{2}}\)?. For hyperbola, find the asymptotes. Sketch the graph. \(\displaystyle{y}^{{2}}+{4}{y}-{2}{x}+{6}={0}\)
...