# Determine whether the polygons \triangle RMP\ and\ \triangle UWX are similar.

Determine whether the polygons are similar. If so, write the similarity ratio and a similarity statement.
$$\displaystyle\triangle{R}{M}{P}\ {\quad\text{and}\quad}\ \triangle{U}{W}{X}$$

• Questions are typically answered in as fast as 30 minutes

### Plainmath recommends

• Get a detailed answer even on the hardest topics.
• Ask an expert for a step-by-step guidance to learn to do it yourself.

funblogC
In $$\displaystyle\triangle{R}{M}{P}$$ & $$\displaystyle\triangle{U}{W}{X}$$
$$\displaystyle{\frac{{{R}{M}}}{{{W}{X}}}}={\frac{{{8}}}{{{12}}}}={\frac{{{2}}}{{{3}}}}$$
$$\displaystyle\Rightarrow{\frac{{{R}{M}}}{{{W}{X}}}}={\frac{{{2}}}{{{3}}}}$$
Now
$$\displaystyle{\frac{{{M}{P}}}{{{W}{U}}}}={\frac{{{10}}}{{{15}}}}={\frac{{{2}}}{{{3}}}}$$
$$\displaystyle\Rightarrow{\frac{{{R}{M}}}{{{W}{X}}}}={\frac{{{M}{P}}}{{{W}{U}}}}\Rightarrow\ {S}{i}{m}{i}{l}{a}{r}{i}{t}{y}\ {R}{a}{t}{i}{o}\ ={\frac{{{2}}}{{{3}}}}$$
$$\displaystyle\therefore{\frac{{{R}{M}}}{{{M}{P}}}}={\frac{{{W}{X}}}{{{W}{U}}}}\Rightarrow\triangle{R}{M}{P}\sim\triangle{X}{W}{U}$$