Observe that

\(\displaystyle{T}{S} \parallel {V}{W}\) (parallel)

In \(\displaystyle\triangle{T}{S}{U}\ {\quad\text{and}\quad}\ \triangle{W}{V}{U}\)

\(\displaystyle\angle{S}{T}{U}=\angle{V}{W}{U}\) (Interior Alternate Angle)

Also \(\displaystyle{T}{S}{U}=\angle{U}{V}{W}\) (Interior Alternate Angle)

So, \(\displaystyle\triangle{T}{S}{U}\sim\triangle{W}{V}{U}\) by AA Similarity

Also \(\displaystyle\triangle{W}{V}{U}\) in same \(\displaystyle\triangle{V}{W}{U}\)

Hence Correct options are

\(\displaystyle\triangle{T}{S}{U}\sim\triangle{W}{V}{U}\)

\(\displaystyle\triangle{T}{S}{U}\sim\triangle{V}{W}{U}\)

By AA similarity