Question # What is the multiple of 1784

Factors and multiples
ANSWERED What is the multiple of 1784 2021-08-01
Step 1
Multiple of an integer d:
For an integer d, if there exists a n such that $$\displaystyle{n}={k}{d}$$, where n and k are some integers, then n is called a multiple of d.
Obtain the positive multiples of 1784 as follows.
Start with integer $$\displaystyle{k}={1},{2},{3},….$$
$$\displaystyle{n}={1}{\left({1784}\right)}$$
$$\displaystyle={1784}$$
$$\displaystyle{n}={2}{\left({1784}\right)}$$
$$\displaystyle={3568}$$
$$\displaystyle{n}={3}{\left({1784}\right)}$$
$$\displaystyle={5352}$$ and so on.
Step 2
Obtain the negative multiples of 1784 as follows.
$$\displaystyle{n}=-{3}{\left({1784}\right)}$$
$$\displaystyle=-{5352}$$
$$\displaystyle{n}=-{2}{\left({1784}\right)}$$
$$\displaystyle=-{3568}$$
$$\displaystyle{n}=-{1}{\left({1784}\right)}$$
$$\displaystyle=-{1784}$$ and so on.
Step 3
Also, $$\displaystyle{n}={0}{\left({1784}\right)}$$
$$\displaystyle={0}$$
Step 4
Therefore, the multiples of 1784 are $$\displaystyle{S}\ldots.–{5352},–{3568},–{1784},{0},{1784},{3568},{5352},…$$