Solve the following recurrence relation: a_{n+1}=da_{n}+c,\ a_{0}=0 and a_{n+1}^{3}=2a_{n}^{3},\ a_{0}=5 and F_{n}=5F_{n-1}-6F_{n-2},\ F_{0}=1

babeeb0oL 2021-07-30 Answered
Solve the following recurrence relation:
a) \(\displaystyle{a}_{{{n}+{1}}}={d}{a}_{{{n}}}+{c},\ {a}_{{{0}}}={0}\)
b) \(\displaystyle{{a}_{{{n}+{1}}}^{{{3}}}}={2}{{a}_{{{n}}}^{{{3}}}},\ {a}_{{{0}}}={5}\)
c) \(\displaystyle{F}_{{{n}}}={5}{F}_{{{n}-{1}}}-{6}{F}_{{{n}-{2}}},\ {F}_{{{0}}}={1}\) and \(\displaystyle{F}_{{{1}}}={4}\)

Want to know more about Discrete math?

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

Nathaniel Kramer
Answered 2021-07-31 Author has 13265 answers

Step 1
According to the given information, it is required to solve the recurrence relation.
a) \(\displaystyle{a}_{{{n}+{1}}}={d}{a}_{{{n}}}+{c},\ {a}_{{{0}}}={0}\)
\(a_{0+1}=a_{1}=da_{0}+c\Rightarrow a_{1}=c\)
\(\displaystyle{a}_{{{1}+{1}}}={a}_{{{2}}}={d}{a}_{{{1}}}+{c}\Rightarrow{a}_{{{2}}}={d}{c}+{c}={\left({d}+{1}\right)}{c}\)
\(\displaystyle{a}_{{{2}+{1}}}={a}_{{{3}}}={d}{a}_{{{2}}}+{c}\Rightarrow{a}_{{{3}}}={d}{\left({d}{c}+{c}\right)}+{c}\Rightarrow{a}_{{{3}}}={d}^{{{2}}}{c}+{d}{c}+{c}={\left({d}^{{{2}}}+{d}+{1}\right)}{c}\)
\(\displaystyle{a}_{{{3}+{1}}}={a}_{{{4}}}={d}{a}_{{{3}}}+{c}\Rightarrow{a}_{{{4}}}={d}{\left({d}^{{{2}}}{c}+{d}{c}+{c}\right)}+{c}\Rightarrow{a}_{{{4}}}={\left({d}^{{{3}}}+{d}^{{{2}}}+{d}+{1}\right)}{c}\)
\(\begin{array}{|c|}\hline a_{n}=(d^{n}+d^{n-1}+d^{n-2}+\cdots+d+1)c \\ \hline \end{array}\)
Step 2
b) \(\displaystyle{{a}_{{{n}+{1}}}^{{{3}}}}={2}{{a}_{{{n}}}^{{{3}}}},\ {a}_{{{0}}}={5}\)
\(\displaystyle{{a}_{{{0}+{1}}}^{{{3}}}}={{a}_{{{1}}}^{{{3}}}}={2}{{a}_{{{0}}}^{{{3}}}}\Rightarrow{{a}_{{{1}}}^{{{3}}}}={2}{\left({5}\right)}^{{{3}}}={2}^{{{1}}}{\left({5}\right)}^{{{3}}}\)
\(\displaystyle{{a}_{{{1}+{1}}}^{{{3}}}}={{a}_{{{2}}}^{{{3}}}}={2}{{a}_{{{1}}}^{{{3}}}}\Rightarrow{{a}_{{{2}}}^{{{3}}}}={2}\times{2}{\left({5}\right)}^{{{3}}}={2}^{{{2}}}{\left({5}\right)}^{{{3}}}\)
\(\displaystyle{{a}_{{{2}+{1}}}^{{{3}}}}={{a}_{{{3}}}^{{{3}}}}={2}{{a}_{{{2}}}^{{{3}}}}\Rightarrow{{a}_{{{3}}}^{{{3}}}}={2}\times{2}\times{2}{\left({5}\right)}^{{{3}}}={2}^{{{3}}}{\left({5}\right)}^{{{3}}}\)
\(\displaystyle{{a}_{{{3}+{1}}}^{{{3}}}}={{a}_{{{4}}}^{{{3}}}}={2}{{a}_{{{3}}}^{{{3}}}}\Rightarrow{{a}_{{{4}}}^{{{3}}}}={2}\times{2}\times{2}\times{2}{\left({5}\right)}^{{{3}}}={2}^{{{4}}}{\left({5}\right)}^{{{3}}}\)
\(\begin{array}{|c|}\hline a_{n}^{3}=2^{n}(5)^{3} \\ \hline \end{array}\)
Step 3
c) \(\displaystyle{F}_{{{n}}}={5}{F}_{{{n}-{1}}}-{6}{F}_{{{n}-{2}}},\ {F}_{{{0}}}={1}\) and \(\displaystyle{F}_{{{1}}}={4}\)
\(\displaystyle{F}_{{{2}}}={5}{F}_{{{1}}}-{6}{F}_{{{0}}}\Rightarrow{F}_{{{2}}}={5}{\left({4}\right)}-{6}{\left({1}\right)}={14}={2}\times{3}^{{{2}}}-{2}^{{{2}}}\)
\(\displaystyle{F}_{{{3}}}={5}{F}_{{{2}}}-{6}{F}_{{{1}}}\Rightarrow{F}_{{{3}}}={5}{\left({14}\right)}-{6}{\left({4}\right)}={46}={2}\times{3}^{{{3}}}-{2}^{{{3}}}\)
\(\displaystyle{F}_{{{4}}}={5}{F}_{{{3}}}-{6}{F}_{{{2}}}\Rightarrow{F}_{{{4}}}={5}{\left({46}\right)}-{6}{\left({14}\right)}={146}={2}\times{3}^{{{4}}}-{2}^{{{4}}}\)
\(\begin{array}{|c|} \hline F_{n}=2\times3^{n}-2^{n} \\ \hline \end{array}\)

Have a similar question?
Ask An Expert
24
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-07-20

Select the correct general solution for the recurrence relation given below:
\(\displaystyle{f}_{{n}}={10}\cdot{f}_{{{n}-{1}}}-{25}\cdot{f}_{{{n}-{2}}}\)
\(\displaystyle{f}_{{n}}=\alpha_{{1}}{\left(-{5}\right)}^{{n}}+\alpha_{{2}}{\left(-{5}\right)}^{{n}}\)
\(\displaystyle{f}_{{n}}=\alpha_{{1}}{\left(-{5}\right)}^{{n}}+\alpha_{{2}}{n}{\left(-{5}\right)}^{{n}}\)
\(\displaystyle{f}_{{n}}=\alpha_{{1}}{\left({5}\right)}^{{n}}+\alpha_{{2}}{n}{\left(-{5}\right)}^{{n}}\)
\(\displaystyle{f}_{{n}}=\alpha_{{1}}{\left({5}\right)}^{{n}}+\alpha_{{2}}{\left({5}\right)}^{{n}}\)
\(\displaystyle{f}_{{n}}=\alpha_{{1}}{\left({5}\right)}^{{n}}+\alpha_{{2}}{\left(-{5}\right)}^{{n}}\)
\(\displaystyle{f}_{{n}}=\alpha_{{1}}{\left({5}\right)}^{{n}}+\alpha_{{2}}{n}{\left({5}\right)}^{{n}}\)
image

asked 2021-09-08
Find a recurrence relation satisfied by this sequence.
\(\displaystyle{a}_{{{n}}}={5}^{{{n}}}\)
asked 2021-09-23
Find a recurrence relation satisfied by this sequence.
\(\displaystyle{a}_{{{n}}}={2}{n}+{3}\)
asked 2021-09-10
Find a recurrence relation satisfied by this sequence.
\(\displaystyle{a}_{{{n}}}={3}\)
asked 2021-09-13
Find a recurrence relation satisfied by this sequence.
\(\displaystyle{a}_{{{n}}}={n}+{\left(-{1}\right)}^{{{n}}}\)
asked 2021-09-19
Find a recurrence relation satisfied by this sequence.
\(\displaystyle{a}_{{{n}}}={n}^{{{2}}}+{n}\)
asked 2021-09-16
Find a recurrence relation satisfied by this sequence.
\(\displaystyle{a}_{{{n}}}={n}^{{{2}}}\)

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question
...