Question

For the polar point (-4, -\frac{3 \pi}{4})Give alternate coordinates with r>0 and -2 \pi \leq \theta < 0.Give alternate coordinates of your choice.

Linear algebra
ANSWERED
asked 2021-08-01

For the polar point \(\displaystyle{\left(-{4},-{\frac{{{3}\pi}}{{{4}}}}\right)}\)
a) Give alternate coordinates with \(\displaystyle{r}{>}{0}\) and \(\displaystyle-{2}\pi\leq\theta{<}{0}\).
b) Give alternate coordinates with \(\displaystyle{r}{<}{0}\) and \(\displaystyle{0}\leq\theta{<}{2}\pi\).
c) Give alternate coordinates of your choice.

Expert Answers (1)

2021-08-02
Step 1
Given: \(\displaystyle{P}{\left(-{4},-{\frac{{{3}\pi}}{{{4}}}}\right)}\)
a) \(\displaystyle{\left(-{4},-{\frac{{{3}\pi}}{{{4}}}}\right)}={\left({4},-{\frac{{{3}\pi}}{{{4}}}}+\pi\right)}\)
\(\displaystyle={\left({4},{\frac{{\pi}}{{{4}}}}\right)}\)
So, \(\displaystyle{\left(-{4},-{\frac{{{3}\pi}}{{{4}}}}\right)}={\left({4},{\frac{{\pi}}{{{4}}}}\right)}\)
Step 2
b) \(\displaystyle{\left(-{4},-{\frac{{{3}\pi}}{{{4}}}}\right)}={\left(-{4},-{\frac{{{3}\pi}}{{{4}}}}+{2}\pi\right)}\)
\(\displaystyle={\left(-{4},-{\frac{{{5}\pi}}{{{4}}}}\right)}\)
So, \(\displaystyle{\left(-{4},-{\frac{{{3}\pi}}{{{4}}}}\right)}={\left(-{4},{\frac{{{5}\pi}}{{{4}}}}\right)}\)
c) \(\displaystyle{\left(-{4},-{\frac{{{3}\pi}}{{{4}}}}\right)}={\left({4},-{\frac{{{3}\pi}}{{{4}}}}+{3}\pi\right)}\)
\(\displaystyle={\left({4},{\frac{{{9}\pi}}{{{4}}}}\right)}\)
So, \(\displaystyle{\left(-{4},-{\frac{{{3}\pi}}{{{4}}}}\right)}={\left({4},{\frac{{{9}\pi}}{{{4}}}}\right)}\)
10
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-01-02

Solve the given Alternate Coordinate Systems and give a correct answer 10) Convert the equation from Cartesian to polar coordinates solving for \(r^2\):
\(\frac{x^2}{9} - \frac{y^2}{16} = 25\)

asked 2021-02-09

To determine:
a) Whether the statement, " The point with Cartesian coordinates \(\displaystyle{\left[\begin{array}{cc} -{2}&\ {2}\end{array}\right]}\) has polar coordinates \(\displaystyle{\left[{b}{f}{\left({2}\sqrt{{{2}}},\ {\frac{{{3}\pi}}{{{4}}}}\right)}\ {\left({2}\sqrt{{{2}}},{\frac{{{11}\pi}}{{{4}}}}\right)}\ {\left({2}\sqrt{{{2}}},\ -{\frac{{{5}\pi}}{{{4}}}}\right)}\ {\quad\text{and}\quad}\ {\left(-{2}\sqrt{{2}},\ -{\frac{{\pi}}{{{4}}}}\right)}\right]}\) " is true or false.
b) Whether the statement, " the graphs of \(\displaystyle{\left[{r}{\cos{\theta}}={4}\ {\quad\text{and}\quad}\ {r}{\sin{\theta}}=\ -{2}\right]}\) intersect exactly once " is true or false.
c) Whether the statement, " the graphs of \(\displaystyle{\left[{r}={4}\ {\quad\text{and}\quad}\ \theta={\frac{{\pi}}{{{4}}}}\right]}\) intersect exactly once ", is true or false.
d) Whether the statement, " the point \(\displaystyle{\left[\begin{array}{cc} {3}&{\frac{{\pi}}{{{2}}}}\end{array}\right]}{l}{i}{e}{s}\ {o}{n}\ {t}{h}{e}\ {g}{r}{a}{p}{h}\ {o}{f}{\left[{r}={3}{\cos{\ }}{2}\ \theta\right]}\) " is true or false.
e) Whether the statement, " the graphs of \(\displaystyle{\left[{r}={2}{\sec{\theta}}\ {\quad\text{and}\quad}\ {r}={3}{\csc{\theta}}\right]}\) are lines " is true or false.

asked 2021-02-26

The reason ehy the point \((-1, \frac{3\pi}{2})\) lies on the polar graph \(r=1+\cos \theta\) even though it does not satisfy the equation.

asked 2020-11-17

The coordinates of the point in the \(\displaystyle{x}' {y}'\) - coordinate system with the given angle of rotation and the xy-coordinates.

...