Here, we have

\(A = $14,373.53 , P = $10,000,t = 11\) and \(n = 2\)

Using the compound interest formula, we get

\(\because 14,373.53 = 10,000 (1 + \frac{r}{2})^{2}(11)\)

\(\Rightarrow 14,373.53 = 10,000 (1 + \frac{r}{2})^{22}\)

\(\Rightarrow \frac{14,373.53}{10000} = (1 + \frac{r}{2})^{22}\)

\(\Rightarrow(1+\frac{r}{2})^{22}=\frac{14,373.53}{10000}\)

\(\Rightarrow (1 + \frac{r}{2})^{22} = 1.437353\)

Taking In on both sides, we get

\(\Rightarrow In(\frac{1+r}{2})^{22} = In(1.437353)\)

\(\Rightarrow 22 In (\frac{2+r}{2}) = In(1.437353)\)

\(\Rightarrow In(2 + r) = \frac{In(1.437353)}{22} + In 2\)

\(\Rightarrow (2 + r) = e\frac{In(1.437353)}{22} + In 2)\)

\(\Rightarrow r = e\frac{In(1.437353)}{22} + In 2)\)

\(\Rightarrow r = 0.03325\)

\(\Rightarrow r = 3.325\%\)

Therefore, \(r = 3.325\%\)

\(A = $14,373.53 , P = $10,000,t = 11\) and \(n = 2\)

Using the compound interest formula, we get

\(\because 14,373.53 = 10,000 (1 + \frac{r}{2})^{2}(11)\)

\(\Rightarrow 14,373.53 = 10,000 (1 + \frac{r}{2})^{22}\)

\(\Rightarrow \frac{14,373.53}{10000} = (1 + \frac{r}{2})^{22}\)

\(\Rightarrow(1+\frac{r}{2})^{22}=\frac{14,373.53}{10000}\)

\(\Rightarrow (1 + \frac{r}{2})^{22} = 1.437353\)

Taking In on both sides, we get

\(\Rightarrow In(\frac{1+r}{2})^{22} = In(1.437353)\)

\(\Rightarrow 22 In (\frac{2+r}{2}) = In(1.437353)\)

\(\Rightarrow In(2 + r) = \frac{In(1.437353)}{22} + In 2\)

\(\Rightarrow (2 + r) = e\frac{In(1.437353)}{22} + In 2)\)

\(\Rightarrow r = e\frac{In(1.437353)}{22} + In 2)\)

\(\Rightarrow r = 0.03325\)

\(\Rightarrow r = 3.325\%\)

Therefore, \(r = 3.325\%\)