# Write each radical expression using exponents and each exponential expression using radicals. frac{Radical expression Exponential expression}{sqrt{5^{3}}} Question Write each radical expression using exponents and each exponential expression using radicals.
$$\frac{Radical\ expression\ Exponential\ expression}{\sqrt{5^{3}}}$$ 2020-10-22
Given:
The radical expression $$\sqrt{5^{3}}$$
Calculation:
In the given radical expression, $$m = 3,\ n = 5\ and\ a = 5.$$
Note that m, n in I and n is positive.
Use the definition, $$a^{\frac{m}{n}}=(\sqrt[a]{a})^{m}=\sqrt[n]{a^{m}}.$$
We have $$\sqrt{5^{3}}=5^{\frac{3}{5}}$$
Final Statement:
Thus, the radical expression $$\sqrt{5^{3}}\$$ is equivalent to the exponential expressio
$$5^{\frac{3}{5}}.$$

### Relevant Questions Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
$$\displaystyle{\frac{{\sqrt{{{4}}}{\left\lbrace{x}^{{{7}}}\right\rbrace}}}{{\sqrt{{{4}}}{\left\lbrace{x}^{{{3}}}\right\rbrace}}}}$$ Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
$$\displaystyle{\frac{{\sqrt{{{3}}}{\left\lbrace{8}{x}^{{{2}}}\right\rbrace}}}{{\sqrt{{{x}}}}}}$$ Radicals and Exponents Evaluate each expression:
a) $$\displaystyle{\frac{{\sqrt{{{132}}}}}{{\sqrt{{{3}}}}}}$$
b) $$\displaystyle\sqrt{{{3}}}{\left\lbrace{2}\right\rbrace}\sqrt{{{3}}}{\left\lbrace{32}\right\rbrace}$$
c) $$\displaystyle\sqrt{{{4}}}{\left\lbrace{\frac{{{1}}}{{{4}}}}\right\rbrace}\sqrt{{{4}}}{\left\lbrace{\frac{{{1}}}{{{64}}}}\right\rbrace}$$ Radicals and Exponents Evaluate each expression:
a) $$\displaystyle{2}\sqrt{{{3}}}{\left\lbrace{81}\right\rbrace}$$
b) $$\displaystyle{\frac{{\sqrt{{{18}}}}}{{\sqrt{{{25}}}}}}$$
c) $$\displaystyle\sqrt{{{\frac{{{12}}}{{{49}}}}}}$$ To write: An expression using rational exponents and using radicals.
$$\displaystyle{5}{x}^{{{\frac{{{5}}}{{{2}}}}}}+{2}{x}^{{{\frac{{{1}}}{{{2}}}}}}+{x}^{{{\frac{{{3}}}{{{2}}}}}}$$ Write each radical expression using exponents and each exponential expression using radicals. Radical expression Exponential expression $$\sqrt{y^{4}}$$ Use rational exponents to write a single radical expression $$\left(\sqrt{x^{2}y^{5}}\right)^{12}$$ a) $$\displaystyle\sqrt{{{6}}}{\left\lbrace{y}^{{{5}}}\right\rbrace}\sqrt{{{3}}}{\left\lbrace{y}^{{{2}}}\right\rbrace}$$
b) $$\displaystyle{\left({5}\sqrt{{{3}}}{\left\lbrace{x}\right\rbrace}\right)}{\left({2}\sqrt{{{4}}}{\left\lbrace{x}\right\rbrace}\right)}$$ a. $$2\ln4x^{3}\ +\ 3\ln\ y\ -\ \frac{1}{3}\ln\ z^{6}$$
b. $$\ln(x^{2}\ -\ 16)\ -\ \ln(x\ +\ 4)$$ Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers. NKS $$\displaystyle\sqrt{{{x}^{{{5}}}}}{x}{5}$$