Question

A)If X=\{1,2,3,4,\ldots 10\} , f_A=0101010101 \text{ and } B=1,2,4,67,9. \text{ Find } |A \cdot B| Find (B \cdot C) \cdot A

Discrete math
ANSWERED
asked 2021-07-14

A)If \(\displaystyle{X}={\left\lbrace{1},{2},{3},{4},\ldots{10}\right\rbrace},{f}_{{A}}={0101010101}\ \text{ and }\ {B}={1},{2},{4},{67},{9}.\ \text{ Find }\ {\left|{A}\cdot{B}\right|}\)
B) Let \(A=\begin{bmatrix}1 & 0&1 \\0 & 1&0 \end{bmatrix} , B=\begin{bmatrix}1 & 0&0 \\0 & 0&1 \end{bmatrix} \text{ and } C=\begin{bmatrix}1 & 0 \\0 & 1\\0&1 \end{bmatrix}\)
Find \(\displaystyle{\left({B}\cdot{C}\right)}\cdot{A}\)
image

Expert Answers (1)

2021-07-15

Calculation:

12
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-07-20

Select the correct general solution for the recurrence relation given below:
\(\displaystyle{f}_{{n}}={10}\cdot{f}_{{{n}-{1}}}-{25}\cdot{f}_{{{n}-{2}}}\)
\(\displaystyle{f}_{{n}}=\alpha_{{1}}{\left(-{5}\right)}^{{n}}+\alpha_{{2}}{\left(-{5}\right)}^{{n}}\)
\(\displaystyle{f}_{{n}}=\alpha_{{1}}{\left(-{5}\right)}^{{n}}+\alpha_{{2}}{n}{\left(-{5}\right)}^{{n}}\)
\(\displaystyle{f}_{{n}}=\alpha_{{1}}{\left({5}\right)}^{{n}}+\alpha_{{2}}{n}{\left(-{5}\right)}^{{n}}\)
\(\displaystyle{f}_{{n}}=\alpha_{{1}}{\left({5}\right)}^{{n}}+\alpha_{{2}}{\left({5}\right)}^{{n}}\)
\(\displaystyle{f}_{{n}}=\alpha_{{1}}{\left({5}\right)}^{{n}}+\alpha_{{2}}{\left(-{5}\right)}^{{n}}\)
\(\displaystyle{f}_{{n}}=\alpha_{{1}}{\left({5}\right)}^{{n}}+\alpha_{{2}}{n}{\left({5}\right)}^{{n}}\)
image

asked 2021-07-30

Let R be the relation from X={1,2,3,5} to Y={0,3,4,9} defined by xRy if and only if \(\displaystyle{x}^{{2}}={y}\)
image

asked 2021-07-22

a)Let \(\displaystyle{A}={\left\lbrace{1},{2},{3},{4},{5},{6}\right\rbrace},{A}_{{1}}={\left\lbrace{1},{2}\right\rbrace},{A}_{{2}}={\left\lbrace{3},{4}\right\rbrace}\ \text{ and }\ {A}_{{3}}={\left\lbrace{5},{6}\right\rbrace}.{I}{s}{\left\lbrace{A}_{{1}},{A}_{{2}},{A}_{{3}}\right\rbrace}\) a partition of A?
b) Let Z be the set of all integers and let:
\(\displaystyle{T}_{{0}}={\left\lbrace{n}\in{Z}{\mid}{n}={3}{k},\ \text{ for some integer }\ {k}\right\rbrace}\)
\(\displaystyle{T}_{{1}}={\left\lbrace{n}\in{Z}{\mid}{n}={3}{k}+{1},\ \text{ for some integer }\ {k}\right\rbrace}\) ,and
\(\displaystyle{T}_{{2}}={\left\lbrace{n}\in{Z}{\mid}{n}={3}{k}+{2},\ \text{ for some integer }\ {k}\right\rbrace}\)
Is \(\displaystyle{\left\lbrace{T}_{{0}},{T}_{{1}},{T}_{{2}}\right\rbrace}\) a partition of Z?
image

asked 2021-08-03

A)Write the negation of the statement: "If 2 is prime then 2+4>10"
B) Determine the type of the statement:
\(\displaystyle{\left(\sim{q}\wedge{\left({p}\rightarrow{q}\right)}\right)}\rightarrow\sim{p}\) pts)
C)Prove by contradiction: If ab is even then a or b is even.
image

...