Compute the following a) begin{bmatrix}-5 & -4&3&-10&-3&6 6&-10&5&9&4&-1 end{bmatrix}+begin{bmatrix}-7 & 3&10&0&8&8 8&0&4&-3&-8&0 end{bmatrix}b) -5begin{bmatrix}8 & -10&7 0 & -9&710&-5&-101&5&-10 end{bmatrix}c)begin{bmatrix}3 & 0&-8 6 & -4&-26&0&-8-9&-7&-7 end{bmatrix}^T

CoormaBak9 2020-12-16 Answered

Compute the following
a) \(\begin{bmatrix}-5 & -4&3&-10&-3&6 \\6&-10&5&9&4&-1 \end{bmatrix}+\begin{bmatrix}-7 & 3&10&0&8&8 \\8&0&4&-3&-8&0 \end{bmatrix}\)
b) \(-5\begin{bmatrix}8 & -10&7 \\0 & -9&7\\10&-5&-10\\1&5&-10 \end{bmatrix}\)
c)\(\begin{bmatrix}3 & 0&-8 \\6 & -4&-2\\6&0&-8\\-9&-7&-7 \end{bmatrix}^T\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Gennenzip
Answered 2020-12-17 Author has 21128 answers
Part (a)
Given:
\(\begin{bmatrix}-5 & -4&3&-10&-3&6 \\6&-10&5&9&4&-1 \end{bmatrix}+\begin{bmatrix}-7 & 3&10&0&8&8 \\8&0&4&-3&-8&0 \end{bmatrix}\)
By using matrix addition
\(\begin{bmatrix}-5 & -4&3&-10&-3&6 \\6&-10&5&9&4&-1 \end{bmatrix}+\begin{bmatrix}-7 & 3&10&0&8&8 \\8&0&4&-3&-8&0 \end{bmatrix}\)
\(=\begin{bmatrix}-5+(-7) & -4+3&3+10&-10+0&-3+8&6+8 \\6+8&-10+0&5+4&9+(-3)&4+(-8)&-1+0 \end{bmatrix}\)
\(\begin{bmatrix}-12 & -1&13&-10&5&14 \\14&-10&9&6&-4&-1 \end{bmatrix}\)
Part (b)
Given:
\(-5\begin{bmatrix}8 & -10&7 \\0 & -9&7\\10&-5&-10\\1&5&-10 \end{bmatrix}\)
Using scalar multiplication of matrices.
\(-5\begin{bmatrix}8 & -10&7 \\0 & -9&7\\10&-5&-10\\1&5&-10 \end{bmatrix}=\begin{bmatrix}-5(8) & -5(-10)&-5(7) \\-5(0) & -5(-9)&-5(7)\\-5(10)&-5(-5)&-5(-10)\\-5(1)&-5(5)&-5(-10) \end{bmatrix}\)
\(\begin{bmatrix}-40 & 50&-35 \\0 & 45&-35\\-50&25&50\\-5&-25&50 \end{bmatrix}\)
Part (c)
Given:
\(\begin{bmatrix}3 & 0&-8 \\6 & -4&-2\\6&0&-8\\-9&-7&-7 \end{bmatrix}^T\)
Transpose of a matrix is obtained by flipping matrix along diagonal,
\(\begin{bmatrix}3 & 0&-8 \\6 & -4&-2\\6&0&-8\\-9&-7&-7 \end{bmatrix}^T=\begin{bmatrix}3 & 6&6&-9 \\0 & -4&0&-7\\-8&-2&-8&-7 \end{bmatrix}\)
Not exactly what you’re looking for?
Ask My Question
25
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-06-13
For the matrix A below, find a nonzero vector in Nul A and a nonzero vector in Col A.
\(A=\begin{bmatrix}2&3&5&-9\\-8&-9&-11&21\\4&-3&-17&27\end{bmatrix}\)
Find a nonzero vector in Nul A.
\(A=\begin{bmatrix}-3\\2\\0\\1\end{bmatrix}\)
asked 2021-02-13

Matrices C and D are shown below
\(C=\begin{bmatrix}2&1&0 \\0&3&4\\0&2&1 \end{bmatrix},D=\begin{bmatrix}a & b&-0.4 \\0&-0.2&0.8\\0&0.4&-0.6 \end{bmatrix}\)
What values of a and b will make the equation CD=I true?
a)a=0.5 , b=0.1
b)a=0.1 , b=0.5
c)a=-0.5 , b=-0.1

asked 2021-01-17

Refer to the following matrices.
\(A=\begin{bmatrix}2 & -3&7&-4 \\-11 & 2&6&7 \\6 & 0&2&7 \\5 & 1&5&-8 \end{bmatrix} B=\begin{bmatrix}3 & -1&2 \\0 & 1&4 \\3 & 2&1 \\-1 & 0&8 \end{bmatrix} , C=\begin{bmatrix}1& 0&3 &4&5 \end{bmatrix} , D =\begin{bmatrix}1\\ 3\\-2 \\0 \end{bmatrix}\)
Identify the row matrix. Matrix C is a row matrix.

asked 2021-02-09

Compute the indicated matrices, if possible .
\(A^2B\)
let \(A=\begin{bmatrix}1 & 2 \\3 & 5 \end{bmatrix} \text{ and } B=\begin{bmatrix}2 & 0 & -1 \\3 & -3 & 4 \end{bmatrix}\)

asked 2021-03-07

Find the following matrices:
a) \(A + B\).
(b) \(A - B\).
(c) \(-4A\).
\(A=\begin{bmatrix}2 & -10&-2 \\14 & 12&10\\4&-2&2 \end{bmatrix} , B=\begin{bmatrix}6 & 10&-2 \\0 & -12&-4\\-5&2&-2 \end{bmatrix}\)

asked 2021-01-31

Solve \(\begin{bmatrix}6 & -5&9 \\-4 & -5&3 \end{bmatrix}=2X-5\begin{bmatrix}2 & 1&-6 \\-6 & 6&3 \end{bmatrix}\)

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question
...