According to one​ study, brain weights of men are normally distributed with a mean of 1.20kg and a standard deviation of 0.13kg. Use the data to answer questions​ (a) through​ (e). a. Determine the sampling distribution of the sample mean for samples of size 3. The mean of the sample mean is mu x = ? The standard deviation of the sample mean is sigma x = ? ​(Round to four decimal places as​ needed.) b. Determine the sampling distribution of the sample mean for samples of size 12. The mean of the sample mean is mu x = ? The standard deviation of the sample mean is sigma x = ? (Round to four decimal places as​ needed.)

Question
Modeling data distributions
According to one​ study, brain weights of men are normally distributed with a mean of 1.20kg and a standard deviation of 0.13kg. Use the data to answer questions​ (a) through​ (e). a. Determine the sampling distribution of the sample mean for samples of size 3. The mean of the sample mean is $$\mu x = ?$$ The standard deviation of the sample mean is $$\sigma x = ?$$ ​(Round to four decimal places as​ needed.) b. Determine the sampling distribution of the sample mean for samples of size 12. The mean of the sample mean is $$\mu x = ?$$ The standard deviation of the sample mean is $$\sigma x = ?$$ (Round to four decimal places as​ needed.)

2020-11-28
Given: $$\mu = 1.20 kg$$
$$\sigma = 0.13 kg$$ a) Given: $$n = 3$$ The mean of the sample mean is $$\mu_{x} = \mu = 1.20$$ The standard deviation of the sample mean is $$\sigma_{x}=\frac{\sigma}{\sqrt{n}}=\frac{0.13}{\sqrt{3}}=0.0751$$ b) Given: $$n = 12$$ The mean of the sample mean is $$\mu_x = \mu = 1.20$$ The standard deviation of the sample mean is $$\sigma_{x}=\frac{\sigma}{\sqrt{n}}=\frac{0.13}{\sqrt{12}}=0.0375$$

Relevant Questions

1. Find each of the requested values for a population with a mean of $$? = 40$$, and a standard deviation of $$? = 8$$ A. What is the z-score corresponding to $$X = 52?$$ B. What is the X value corresponding to $$z = - 0.50?$$ C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of $$M=42$$ for a sample of $$n = 4$$ scores? E. What is the z-scores corresponding to a sample mean of $$M= 42$$ for a sample of $$n = 6$$ scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: $$a. -2.00 b. 1.25 c. 3.50 d. -0.34$$ 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with $$\mu = 78$$ and $$\sigma = 12$$. Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: $$82, 74, 62, 68, 79, 94, 90, 81, 80$$. 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about $$12 (\mu = 42, \sigma = 12)$$. You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is$44.50 from tips. Test for a difference between this value and the population mean at the $$\alpha = 0.05$$ level of significance.
A random sample of $$\displaystyle{n}_{{1}}={16}$$ communities in western Kansas gave the following information for people under 25 years of age.
$$\displaystyle{X}_{{1}}:$$ Rate of hay fever per 1000 population for people under 25
$$\begin{array}{|c|c|} \hline 97 & 91 & 121 & 129 & 94 & 123 & 112 &93\\ \hline 125 & 95 & 125 & 117 & 97 & 122 & 127 & 88 \\ \hline \end{array}$$
A random sample of $$\displaystyle{n}_{{2}}={14}$$ regions in western Kansas gave the following information for people over 50 years old.
$$\displaystyle{X}_{{2}}:$$ Rate of hay fever per 1000 population for people over 50
$$\begin{array}{|c|c|} \hline 94 & 109 & 99 & 95 & 113 & 88 & 110\\ \hline 79 & 115 & 100 & 89 & 114 & 85 & 96\\ \hline \end{array}$$
(i) Use a calculator to calculate $$\displaystyle\overline{{x}}_{{1}},{s}_{{1}},\overline{{x}}_{{2}},{\quad\text{and}\quad}{s}_{{2}}.$$ (Round your answers to two decimal places.)
(ii) Assume that the hay fever rate in each age group has an approximately normal distribution. Do the data indicate that the age group over 50 has a lower rate of hay fever? Use $$\displaystyle\alpha={0.05}.$$
(a) What is the level of significance?
State the null and alternate hypotheses.
$$\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}<\mu_{{2}}$$
$$\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}>\mu_{{2}}$$
$$\displaystyle{H}_{{0}}:\mu_{{1}}=\mu_{{2}},{H}_{{1}}:\mu_{{1}}\ne\mu_{{2}}$$
$$\displaystyle{H}_{{0}}:\mu_{{1}}>\mu_{{2}},{H}_{{1}}:\mu_{{1}}=\mu_{{12}}$$
(b) What sampling distribution will you use? What assumptions are you making?
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations,
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations,
The Student's t. We assume that both population distributions are approximately normal with known standard deviations,
What is the value of the sample test statistic? (Test the difference $$\displaystyle\mu_{{1}}-\mu_{{2}}$$. Round your answer to three decimalplaces.)
What is the value of the sample test statistic? (Test the difference $$\displaystyle\mu_{{1}}-\mu_{{2}}$$. Round your answer to three decimal places.)
(c) Find (or estimate) the P-value.
P-value $$\displaystyle>{0.250}$$
$$\displaystyle{0.125}<{P}-\text{value}<{0},{250}$$
$$\displaystyle{0},{050}<{P}-\text{value}<{0},{125}$$
$$\displaystyle{0},{025}<{P}-\text{value}<{0},{050}$$
$$\displaystyle{0},{005}<{P}-\text{value}<{0},{025}$$
P-value $$\displaystyle<{0.005}$$
Sketch the sampling distribution and show the area corresponding to the P-value.
P.vaiue Pevgiue
P-value f P-value
Would you rather spend more federal taxes on art? Of a random sample of $$n_{1} = 86$$ politically conservative voters, $$r_{1} = 18$$ responded yes. Another random sample of $$n_{2} = 85$$ politically moderate voters showed that $$r_{2} = 21$$ responded yes. Does this information indicate that the population proportion of conservative voters inclined to spend more federal tax money on funding the arts is less than the proportion of moderate voters so inclined? Use $$\alpha = 0.05.$$ (a) State the null and alternate hypotheses. $$H_0:p_{1} = p_{2}, H_{1}:p_{1} > p_2$$
$$H_0:p_{1} = p_{2}, H_{1}:p_{1} < p_2$$
$$H_0:p_{1} = p_{2}, H_{1}:p_{1} \neq p_2$$
$$H_{0}:p_{1} < p_{2}, H_{1}:p_{1} = p_{2}$$ (b) What sampling distribution will you use? What assumptions are you making? The Student's t. The number of trials is sufficiently large. The standard normal. The number of trials is sufficiently large.The standard normal. We assume the population distributions are approximately normal. The Student's t. We assume the population distributions are approximately normal. (c)What is the value of the sample test statistic? (Test the difference $$p_{1} - p_{2}$$. Do not use rounded values. Round your final answer to two decimal places.) (d) Find (or estimate) the P-value. (Round your answer to four decimal places.) (e) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level alpha? At the $$\alpha = 0.05$$ level, we reject the null hypothesis and conclude the data are statistically significant. At the $$\alpha = 0.05$$ level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the $$\alpha = 0.05$$ level, we fail to reject the null hypothesis and conclude the data are not statistically significant. At the $$\alpha = 0.05$$ level, we reject the null hypothesis and conclude the data are not statistically significant. (f) Interpret your conclusion in the context of the application. Reject the null hypothesis, there is sufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Fail to reject the null hypothesis, there is sufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Fail to reject the null hypothesis, there is insufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Reject the null hypothesis, there is insufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters.
$$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}&{H}{o}{u}{s}{e}{w}{\quad\text{or}\quad}{k}{H}{o}{u}{r}{s}\backslash{h}{l}\in{e}{G}{e}{n}{d}{e}{r}&{S}{a}\mp\le\ {S}{i}{z}{e}&{M}{e}{a}{n}&{S}{\tan{{d}}}{a}{r}{d}\ {D}{e}{v}{i}{a}{t}{i}{o}{n}\backslash{h}{l}\in{e}{W}{o}{m}{e}{n}&{473473}&{33.133}{.1}&{14.214}{.2}\backslash{h}{l}\in{e}{M}{e}{n}&{488488}&{18.618}{.6}&{15.715}{.7}\backslash{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$ a. Based on this​ study, calculate how many more hours per​ week, on the​ average, women spend on housework than men. b. Find the standard error for comparing the means. What factor causes the standard error to be small compared to the sample standard deviations for the two​ groups? The cause the standard error to be small compared to the sample standard deviations for the two groups. c. Calculate the​ 95% confidence interval comparing the population means for women Interpret the result including the relevance of 0 being within the interval or not. The​ 95% confidence interval for ​$$\displaystyle{\left(\mu_{{W}}-\mu_{{M}}​\right)}$$ is: (Round to two decimal places as​ needed.) The values in the​ 95% confidence interval are less than 0, are greater than 0, include 0, which implies that the population mean for women could be the same as is less than is greater than the population mean for men. d. State the assumptions upon which the interval in part c is based. Upon which assumptions below is the interval​ based? Select all that apply. A.The standard deviations of the two populations are approximately equal. B.The population distribution for each group is approximately normal. C.The samples from the two groups are independent. D.The samples from the two groups are random.
Is statistical inference intuitive to babies? In other words, are babies able to generalize from sample to population? In this study,1 8-month-old infants watched someone draw a sample of five balls from an opaque box. Each sample consisted of four balls of one color (red or white) and one ball of the other color. After observing the sample, the side of the box was lifted so the infants could see all of the balls inside (the population). Some boxes had an “expected” population, with balls in the same color proportions as the sample, while other boxes had an “unexpected” population, with balls in the opposite color proportion from the sample. Babies looked at the unexpected populations for an average of 9.9 seconds (sd = 4.5 seconds) and the expected populations for an average of 7.5 seconds (sd = 4.2 seconds). The sample size in each group was 20, and you may assume the data in each group are reasonably normally distributed. Is this convincing evidence that babies look longer at the unexpected population, suggesting that they make inferences about the population from the sample? Let group 1 and group 2 be the time spent looking at the unexpected and expected populations, respectively. A) Calculate the relevant sample statistic. Enter the exact answer. Sample statistic: _____ B) Calculate the t-statistic. Round your answer to two decimal places. t-statistic = ___________ C) Find the p-value. Round your answer to three decimal places. p-value =
A new thermostat has been engineered for the frozen food cases in large supermarkets. Both the old and new thermostats hold temperatures at an average of $$25^{\circ}F$$. However, it is hoped that the new thermostat might be more dependable in the sense that it will hold temperatures closer to $$25^{\circ}F$$. One frozen food case was equipped with the new thermostat, and a random sample of 21 temperature readings gave a sample variance of 5.1. Another similar frozen food case was equipped with the old thermostat, and a random sample of 19 temperature readings gave a sample variance of 12.8. Test the claim that the population variance of the old thermostat temperature readings is larger than that for the new thermostat. Use a $$5\%$$ level of significance. How could your test conclusion relate to the question regarding the dependability of the temperature readings? (Let population 1 refer to data from the old thermostat.)
(a) What is the level of significance?
State the null and alternate hypotheses.
$$H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}$$
(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)
What are the degrees of freedom?
$$df_{N} = ?$$
$$df_{D} = ?$$
What assumptions are you making about the original distribution?
The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.
(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?
At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
(e) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.
This exercise requires the use of a graphing calculator or computer programmed to do numerical integration. The normal distribution curve, which models the distributions of data in a wide range of applications, is given by the function $$p(x)=\frac{1}{\sqrt{2 \pi}^{\sigma}}e^{-(x-\mu)^{2}}/(2 \sigma^{2})$$ where $$\pi = 3.14159265 . . .$$ and sigma and mu are constants called the standard deviation and the mean, respectively. Its graph$$(\text{for}\ \sigma=1\ \text{and}\ \mu=2)$$is shown in the figure. With $$\sigma = 5 \text{and} \mu = 0$$, approximate $$\int_0^{+\infty}\ p(x)\ dx.$$
An automobile tire manufacturer collected the data in the table relating tire pressure x​ (in pounds per square​ inch) and mileage​ (in thousands of​ miles). A mathematical model for the data is given by
$$\displaystyle​ f{{\left({x}\right)}}=-{0.554}{x}^{2}+{35.5}{x}-{514}.$$
$$\begin{array}{|c|c|} \hline x & Mileage \\ \hline 28 & 45 \\ \hline 30 & 51\\ \hline 32 & 56\\ \hline 34 & 50\\ \hline 36 & 46\\ \hline \end{array}$$
​(A) Complete the table below.
$$\begin{array}{|c|c|} \hline x & Mileage & f(x) \\ \hline 28 & 45 \\ \hline 30 & 51\\ \hline 32 & 56\\ \hline 34 & 50\\ \hline 36 & 46\\ \hline \end{array}$$
​(Round to one decimal place as​ needed.)
$$A. 20602060xf(x)$$
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (28,45), (30,51), (32,56), (34,50), and (36,46). A parabola opens downward and passes through the points (28,45.7), (30,52.4), (32,54.7), (34,52.6), and (36,46.0). All points are approximate.
$$B. 20602060xf(x)$$
Acoordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2.
Data points are plotted at (43,30), (45,36), (47,41), (49,35), and (51,31). A parabola opens downward and passes through the points (43,30.7), (45,37.4), (47,39.7), (49,37.6), and (51,31). All points are approximate.
$$C. 20602060xf(x)$$
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (43,45), (45,51), (47,56), (49,50), and (51,46). A parabola opens downward and passes through the points (43,45.7), (45,52.4), (47,54.7), (49,52.6), and (51,46.0). All points are approximate.
$$D.20602060xf(x)$$
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (28,30), (30,36), (32,41), (34,35), and (36,31). A parabola opens downward and passes through the points (28,30.7), (30,37.4), (32,39.7), (34,37.6), and (36,31). All points are approximate.
​(C) Use the modeling function​ f(x) to estimate the mileage for a tire pressure of 29
$$\displaystyle​\frac{{{l}{b}{s}}}{{{s}{q}}}\in.$$ and for 35
$$\displaystyle​\frac{{{l}{b}{s}}}{{{s}{q}}}\in.$$
The mileage for the tire pressure $$\displaystyle{29}\frac{{{l}{b}{s}}}{{{s}{q}}}\in.$$ is
The mileage for the tire pressure $$\displaystyle{35}\frac{{{l}{b}{s}}}{{{s}{q}}}$$ in. is
(Round to two decimal places as​ needed.)
(D) Write a brief description of the relationship between tire pressure and mileage.
A. As tire pressure​ increases, mileage decreases to a minimum at a certain tire​ pressure, then begins to increase.
B. As tire pressure​ increases, mileage decreases.
C. As tire pressure​ increases, mileage increases to a maximum at a certain tire​ pressure, then begins to decrease.
D. As tire pressure​ increases, mileage increases.
Are yields for organic farming different from conventional farming yields? Independent random samples from method A (organic farming) and method B (conventional farming) gave the following information about yield of sweet corn (in tons/acre). $$\text{Method} A: 6.51, 7.02, 6.81, 7.27, 6.73, 6.11, 6.17, 5.88, 6.69, 7.12, 5.74, 6.90.$$
$$\text{Method} B: 7.32, 7.01, 6.66, 6.85, 5.78, 6.48, 5.95, 6.31, 6.50, 5.93, 6.68.$$ Use a 5% level of significance to test the claim that there is no difference between the yield distributions. (a) What is the level of significance? (b) Compute the sample test statistic. (Round your answer to two decimal places.) (c) Find the P-value of the sample test statistic. (Round your answer to four decimal places.)