Means =59.47444, SDS = 12.91711, Min = 23.599, Max = 82.603 AND Means = 67.00742, SDS = 12.7302, Min = 39.613, Max = 82.603 Means Based on your findin

smileycellist2 2021-02-25 Answered
Means \(=59.47444, SDS = 12.91711, Min = 23.599, Max = 82.603\) AND Means \(= 67.00742, SDS = 12.7302, Min = 39.613, Max = 82.603\) Means Based on your findings write a preliminary statistical report that comprises of the Methods, Results/Analysis and Conclusions sections. Include a comparison of the two distributions in (1) and (2) in terms of their central tendencies and variability. While your audience is one that lacks statistical expertise you are still expected to correctly interpret the data and statistical analyses, in a manner that is understandable to your audience. Be mindful to present an impartial report that distinguishes conclusive and inferential statements for the audience.

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

liannemdh
Answered 2021-02-26 Author has 11665 answers
Mean: Mean is an important measure of center when the data is quantitative. Mean of a data set is the sum of the data values divided by the size of the dataset. Standard deviation: The standard deviation is based on how much each observation deviates from a central point represented by the mean. In general, the greater the distances between the individual observations and the mean, the greater the variability of the data set. Let us consider the two methods as method-1 and methods-2. The descriptive statistics for the method-1 and method-2 are as given below: \(\overline{x}_{1}=59.4744, s_{1}=12.9171, \min_{1}=23.599\ \text{and}\ \max_{1}=82.603\)
\(\overline{x}_{2}=67.0074, s_{2}=12.9171, \min_{2}=39.613\ \text{and}\ \max_{2}=82.603\) Statistical report for the methods: The average value of the data points in method-1 dataset is 59.4744 and the data points in method-1 dataset deviates from the mean by 12.9171. The highest value in the method-1 dataset is 82.603 and the lowest value is 23.599. The average value of the data points in method-2 dataset is 67.00742 and the data points in method-2 dataset deviates from the mean by 12.7302. The highest value in the method-2 dataset is 82.603 and the lowest value is 39.613. The range of the method-1 dataset is \(82.603-23.599 = 59.004\) and the range of the method-2 dataset is \(82.603-39.613 = 42.99\). Comparison: The average of the data points is highest for the method-2 dataset than the average of the data points in method-2 dataset. From the values of range and standard deviation, it can be concluded that the variability in method-1 dataset is higher than the variability in method-2 dataset.
Have a similar question?
Ask An Expert
38
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-05-14
When σ is unknown and the sample size is \(\displaystyle{n}\geq{30}\), there are tow methods for computing confidence intervals for μμ. Method 1: Use the Student's t distribution with d.f. = n - 1. This is the method used in the text. It is widely employed in statistical studies. Also, most statistical software packages use this method. Method 2: When \(\displaystyle{n}\geq{30}\), use the sample standard deviation s as an estimate for σσ, and then use the standard normal distribution. This method is based on the fact that for large samples, s is a fairly good approximation for σσ. Also, for large n, the critical values for the Student's t distribution approach those of the standard normal distribution. Consider a random sample of size n = 31, with sample mean x¯=45.2 and sample standard deviation s = 5.3. (c) Compare intervals for the two methods. Would you say that confidence intervals using a Student's t distribution are more conservative in the sense that they tend to be longer than intervals based on the standard normal distribution?
asked 2020-10-23
1. Find each of the requested values for a population with a mean of \(? = 40\), and a standard deviation of \(? = 8\) A. What is the z-score corresponding to \(X = 52?\) B. What is the X value corresponding to \(z = - 0.50?\) C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores? E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\) 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\). 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.
asked 2021-02-25
Give a full and correct answer Why is it important that a sample be random and representative when conducting hypothesis testing? Representative Sample vs. Random Sample: An Overview Economists and researchers seek to reduce sampling bias to near negligible levels when employing statistical analysis. Three basic characteristics in a sample reduce the chances of sampling bias and allow economists to make more confident inferences about a general population from the results obtained from the sample analysis or study: * Such samples must be representative of the chosen population studied. * They must be randomly chosen, meaning that each member of the larger population has an equal chance of being chosen. * They must be large enough so as not to skew the results. The optimal size of the sample group depends on the precise degree of confidence required for making an inference. Representative sampling and random sampling are two techniques used to help ensure data is free of bias. These sampling techniques are not mutually exclusive and, in fact, they are often used in tandem to reduce the degree of sampling error in an analysis and allow for greater confidence in making statistical inferences from the sample in regard to the larger group. Representative Sample A representative sample is a group or set chosen from a larger statistical population or group of factors or instances that adequately replicates the larger group according to whatever characteristic or quality is under study. A representative sample parallels key variables and characteristics of the large society under examination. Some examples include sex, age, education level, socioeconomic status (SES), or marital status. A larger sample size reduced sampling error and increases the likelihood that the sample accurately reflects the target population. Random Sample A random sample is a group or set chosen from a larger population or group of factors of instances in a random manner that allows for each member of the larger group to have an equal chance of being chosen. A random sample is meant to be an unbiased representation of the larger population. It is considered a fair way to select a sample from a larger population since every member of the population has an equal chance of getting selected. Special Considerations: People collecting samples need to ensure that bias is minimized. Representative sampling is one of the key methods of achieving this because such samples replicate as closely as possible elements of the larger population under study. This alone, however, is not enough to make the sampling bias negligible. Combining the random sampling technique with the representative sampling method reduces bias further because no specific member of the representative population has a greater chance of selection into the sample than any other. Summarize this article in 250 words.
asked 2021-08-20
While using Cost-benefit analysis which of the following is a true statement.
a) It will always produce a recommendation consistent with the simple payback period method.
b) It will always produce a recommendation consistent with the present worth, future worth, and annual worth methods.
c) It can be used only to evaluate projects from the public sector (such as bridges and roadways).
d) None of the above.
asked 2021-08-04
Answer true or false to each of the following statements and explain your answers.
a. Polynomial regression equations are useful for modeling more complex curvature in regression equations than can be handled by using the method of transformations.
b. A polynomial regression equation can be estimated using the method of least squares, the same method used in multiple linearregression.
c. The term “linear” in “multiple linear regression” refers to using only first-degree terms in the predictor variables.
asked 2021-10-20
Range=max value- min value
h=r/m m=no of classes
The weights shown in data given to the nearest tenth of a pound, were obtained from a sample of 18- to 24-year-old males. Organize these data into frequency and relative-frequency distributions. Use a class width of 20 and a first cutpoint of 120.
129.2 185.3 218.1 182.5 142.8 155.2 170.0 151.3 187.5 145.6 167.3 161.0 178.7 165.0 172.5 191.1 150.7 187.0 173.7 178.2 161.7 170.1 165.8 214.6 136.7 278.8 175.6 188.7 132.1 158.5 146.4 209.1 175.4 182.0 173.6 149.9 158.6
Also calculate cumulative frequency and midpoint.
asked 2021-05-22
Sheila is in Ms. Cai's class . She noticed that the graph of the perimeter for the "dented square" in problem 3-61 was a line . "I wonder what the graph of its area looks like ," she said to her teammates .
a. Write an equation for the area of the "dented square" if xx represents the length of the large square and yy represents the area of the square.
b. On graph paper , graph the rule you found for the area in part (a). Why does a 1st−quadrant graph make sense for this situation? Are there other values of xx that cannot work in this situation? Be sure to include an indication of this on your graph, as necessary.
c. Explain to Sheila what the graph of the area looks like.
d. Use the graph to approximate xx when the area of the shape is 20 square units.
...