Question

Using the following table of values for the rational functions f, s, and h. $$\begin{matrix} \text{x} & \text{-10000} & \text{-1000} & \text{-100} & \

Rational functions
ANSWERED
asked 2021-05-17

Using the following table of values for the rational functions f, s, and h. \($$\begin{matrix} \text{x} & \text{-10000} & \text{-1000} & \text{-100} & \text{100} & \text{1000} & \text{10000}\ \text{f(x)} & \text{-10001.9997} & \text{-1001.9970} & \text{-101.9694} & \text{97.9706} & \text{997.9970} & \text{9997.9997}\ \text{g(x)} & \text{-6.0004} & \text{-6.0040} & \text{-6.0404} & \text{-5.9604} & \text{-5.9960} & \text{-5.9996}\ \text{h(x)} & \text{-0.0005} & \text{-0.0050} & \text{-0.0506} & \text{0.0496} & \text{0.0050} & \text{0.0005}\ \end{matrix}$$\)
Based rule that defines the functions f, g, and h. How does the degree of the numerator compare to the degree of the denominator, (e.g., greater than, less than, or equal to.)?

Answers (1)

2021-05-18
function f degree of numerator is greater than denominator
function g degree of numerator and denominator are equal and resultant of the higher degree coefficient is —6
function g degree of denominator is grater than numerator
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-06-01

Determine \(\displaystyle\lim_{x→∞}{f{{\left({x}\right)}}}\) and \(\displaystyle\lim_{x→−∞}{f{{\left({x}\right)}}}\) for the following rational functions. Then give the horizontal asymptote of f (if any). \(\displaystyle{f{{\left({x}\right)}}}=\frac{{{40}{x}^{{5}}+{x}^{{2}}}}{{{16}{x}^{{4}}−{2}{x}}}\)

asked 2021-06-18

Investigate asymptotes of rational functions. Copy and complete the table. Determine the horizontal asymptote of each function algebraically. Function Horizontal Asymptote
\(\displaystyle{f{{\left({x}\right)}}}=\frac{{{x}^{{2}}-{5}{x}{4}}}{{{x}^{{3}}+{2}}}\)
\(\displaystyle{h}{\left({x}\right)}=\frac{{{x}^{{3}}-{3}{x}^{{2}}+{4}{x}-{12}}}{{{x}^{{4}}-{4}}}\)
\(\displaystyle{g{{\left({x}\right)}}}=\frac{{{x}^{{4}}-{1}}}{{{x}^{{5}}+{3}}}\)

asked 2021-05-04

(a) How do you find vertical asymptotes of rational functions? (b) Let s be the rational function \(\displaystyle{s}{\left({x}\right)}={\frac{{{a}_{{{n}}}{x}^{{{n}}}+{a}_{{{n}-{1}}}{x}^{{{n}-{1}}}+\cdots+{a}_{{{1}}}{x}+{a}_{{{0}}}}}{{{b}_{{{m}}}{x}^{{{m}}}+{b}_{{{m}-{1}}}{x}^{{{m}-{1}}}+\cdots+{b}_{{{1}}}{x}+{b}_{{{0}}}}}}\$\$\)
How do you find the horizontal asymptote of s? (c) Find the vertical and horizontal asymptotes of \(\displaystyle{f{{\left({x}\right)}}}={\frac{{{5}{x}^{{{2}}}+{3}}}{{{x}^{{{2}}}-{4}}}}\)

asked 2021-06-07
Fill in the blanks. When evaluating limits at infinity for complicated rational functions, divide the numerator and denominator by the ________ term in the denominator.
...