A basic rotation also called elemental rotation is a rotation about one of the axes of a co-ordinate system.

Step 2:- Calculation:-

The Following three basic rotation matrices rotate vectors by an angle \(\theta\) about x, y, z axes , in three dimensions which codifies their alternating signs.

\(R_x(\theta)=\begin{bmatrix}1 & 0&0 \\0 & \cos\theta&-\sin\theta\\0&\sin\theta&\cos\theta \end{bmatrix}\)

\(R_y(\theta)=\begin{bmatrix}\cos\theta & 0&\sin\theta \\0 & 1&0\\-\sin\theta&0&\cos\theta \end{bmatrix}\)

\(R_z(\theta)=\begin{bmatrix}\cos\theta & -\sin\theta&0 \\\sin\theta & \cos\theta&0\\0&0&1 \end{bmatrix}\)