# The variable z is often used to denote a complex number and z¯ is used to denote its conjugate. If z = a+bi, simplify the expression z^{2}-\overline{z

The variable z is often used to denote a complex number and $$\bar{z}$$ is used to denote its conjugate. If $$z = a+bi,$$ simplify the expression
$$\displaystyle{z}^{{{2}}}-\overline{{{z}}}^{{{2}}}$$

## Want to know more about Complex numbers?

• Questions are typically answered in as fast as 30 minutes

### Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Benedict

With z=a+bi, the conjugate, $$\displaystyle\overline{{z}}$$, is a-bi. Hence, the expression $$\displaystyle{z}^{{{2}}}-\overline{{{z}}}^{{{2}}}$$, is equivalent to
$$\displaystyle{\left({a}+{b}{i}\right)}^{{{2}}}-{\left({a}-{b}{i}\right)}^{{{2}}}={\left[{\left({a}\right)}^{{{2}}}+{2}{\left({a}\right)}{\left({b}{i}\right)}^{{{2}}}\right]}-{\left[{\left({a}\right)}^{{{2}}}-{2}{\left({a}\right)}{\left({b}{i}\right)}+{\left({b}{i}\right)}^{{{2}}}\right]}$$
$$\displaystyle{\left({u}{s}{e}{\left({a}+{b}\right)}^{{{2}}}={\left({a}\right)}^{{{2}}}+{2}{\left({a}\right)}{\left({b}\right)}+{\left({b}\right)}^{{{2}}}\right)}$$
$$\displaystyle={\left[{a}^{{{2}}}+{2}{a}{b}{i}+{b}^{{{2}}}{i}^{{{2}}}\right]}-{\left[{a}^{{{2}}}-{2}{a}{b}{i}+{b}^{{{2}}}{i}^{{{2}}}\right]}={a}^{{{2}}}+{2}{a}{b}{i}+{b}^{{{2}}}{i}^{{{2}}}-{a}^{{{2}}}+{2}{a}{b}{i}-{b}^{{{2}}}{i}^{{{2}}}={\left({a}^{{{2}}}-{a}^{{{2}}}\right)}+{\left({2}{a}{b}{i}+{2}{a}{b}{i}\right)}+{\left({b}^{{{2}}}{i}^{{{2}}}-{b}^{{{2}}}{i}^{{{2}}}\right)}={0}+{4}{a}{b}{i}+{0}={\left({4}{a}{b}{i}\right)}{i}$$.
Hence, $$z^{2}-\overline{z}^{2}=(4abi)i$$.