Question

Find the derivatives of the functions. r(x)=\ln |\frac{-x+1}{(3x-4)(x-9)}|

Derivatives
ANSWERED
asked 2021-05-09
Find the derivatives of the functions. \(\displaystyle{r}{\left({x}\right)}={\ln}{\left|{\frac{{-{x}+{1}}}{{{\left({3}{x}-{4}\right)}{\left({x}-{9}\right)}}}}\right|}\)

Answers (1)

2021-05-10
\(\displaystyle{r}'{\left({x}\right)}={\frac{{{1}}}{{{x}-{1}}}}-{\frac{{{3}}}{{{3}{x}-{4}}}}-{\frac{{{1}}}{{{x}-{9}}}}\)
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-05-26
Find the derivatives of the functions. \(\displaystyle{r}{\left({x}\right)}={\ln}{\left|{\frac{{{\left({x}+{1}\right)}{\left({x}-{3}\right)}}}{{-{2}{x}-{9}}}}\right|}\)
asked 2021-05-14
Find the derivatives of the functions. \(\displaystyle{r}{\left({x}\right)}={\ln{{\left({x}+{1}\right)}}}+{3}{x}^{{{3}}}{e}^{{{x}}}\)
asked 2021-06-11
Find the derivatives of the functions. \(\displaystyle{h}{\left({x}\right)}={\ln{{\left({\frac{{{3}{x}+{1}}}{{{4}{x}-{2}}}}\right)}}}\)
asked 2021-06-13
Find derivatives for the functions. Assume a, b, c, and k are constants.
\(\displaystyle{f{{\left({x}\right)}}}={\frac{{{x}^{{{3}}}}}{{{9}}}}{\left({3}{\ln{{x}}}-{1}\right)}\)
asked 2021-05-03
Find the derivatives of the functions. \(\displaystyle{h}{\left({x}\right)}={\ln{{\left[{\left({3}{x}+{1}\right)}{\left(-{x}+{1}\right)}\right]}}}\)
asked 2021-06-27
Find the derivatives of the functions. \(\displaystyle{f{{\left({x}\right)}}}={\frac{{{1}}}{{{\ln}{\left|{x}\right|}}}}\)
asked 2021-05-17
Find the derivatives of the functions. \(\displaystyle{f{{\left({x}\right)}}}={\frac{{{1}}}{{{x}{\ln{{x}}}}}}\)
asked 2021-06-01
Find the derivatives of the functions. \(\displaystyle{r}{\left({x}\right)}={\ln{{\left({x}^{{{2}}}\right)}}}−{\left[{\ln{{\left({x}−{1}\right)}}}\right]}^{{{2}}}\)
asked 2021-06-03
Find the derivatives of the functions. \(\displaystyle{r}{\left({x}\right)}={\left({\ln{{\left({x}^{{{2}}}\right)}}}\right)}^{{{2}}}\)
asked 2021-05-12
Find the derivatives of the functions. \(\displaystyle{r}{\left({x}\right)}={\ln}{\left|{x}+{e}^{{{x}}}\right|}\)
...