Question

Find the derivatives of the given functions. g(x)=(\sin x)(\tan x)

Derivatives
ANSWERED
asked 2021-06-20
Find the derivatives of the given functions. \(\displaystyle{g{{\left({x}\right)}}}={\left({\sin{{x}}}\right)}{\left({\tan{{x}}}\right)}\)

Answers (1)

2021-06-21
\(\displaystyle{g{{\left({x}\right)}}}={\left({\sin{{x}}}\right)}{\left({\tan{{x}}}\right)}\)
\(\displaystyle{g}'{\left({x}\right)}={\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({\left({\sin{{x}}}\right)}{\left({\tan{{x}}}\right)}\right)}\)
\(\displaystyle={\sin{{x}}}\dot{{\lbrace}}{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({\tan{{x}}}\right)}+{\tan{{x}}}\dot{{\lbrace}}{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({\sin{{x}}}\right)}\)
\(\displaystyle={\sin{{x}}}\dot{{\lbrace}}{{\sec}^{{{2}}}{x}}+{\tan{{x}}}\dot{{\lbrace}}{\cos{{x}}}\)
\(\displaystyle={\sin{{x}}}\dot{{\lbrace}}{{\sec}^{{{2}}}{x}}+{\frac{{{\sin{{x}}}}}{{{\cos{{x}}}}}}\dot{{\cos{{x}}}}\)
\(\displaystyle={\sin{{x}}}\dot{{\lbrace}}{{\sec}^{{{2}}}{x}}+{\sin{{x}}}\)
\(\displaystyle={\sin{{x}}}{\left({1}+{{\sec}^{{{2}}}{x}}\right.}\)
0
 
Best answer

expert advice

Need a better answer?
...