\(\displaystyle\overline{{{x}_{{{3}}}}}\overline{{{x}_{{{1}}}}}\overline{{{x}_{{{2}}}}}\)

asked 2021-10-06

\(\begin{array}{}
&&Job\\
Gender & Male&15&22 \\
& Female&12&32\\
\end{array}\)

asked 2021-07-03

\(\begin{array}{|c|c|}\hline \text{Gender} & \text{No} & \text{Yes} \\ \hline \text{Female} & 15 & 22 \\ \hline \text{Male} & 12 & 32 \\ \hline \end{array}\)

asked 2021-07-01

asked 2021-05-01

asked 2021-06-05

Use the following Normal Distribution table to calculate the area under the Normal Curve (Shaded area in the Figure) when \(Z=1.3\) and \(H=0.05\);

Assume that you do not have vales of the area beyond \(z=1.2\) in the table; i.e. you may need to use the extrapolation.

Check your calculated value and compare with the values in the table \([for\ z=1.3\ and\ H=0.05]\).

Calculate your percentage of error in the estimation.

How do I solve this problem using extrapolation?

\(\begin{array}{|c|c|}\hline Z+H & Prob. & Extrapolation \\ \hline 1.20000 & 0.38490 & Differences \\ \hline 1.21000 & 0.38690 & 0.00200 \\ \hline 1.22000 & 0.38880 & 0.00190 \\ \hline 1.23000 & 0.39070 & 0.00190 \\ \hline 1.24000 & 0.39250 & 0.00180 \\ \hline 1.25000 & 0.39440 & 0.00190 \\ \hline 1.26000 & 0.39620 & 0.00180 \\ \hline 1.27000 & 0.39800 & 0.00180 \\ \hline 1.28000 & 0.39970 & 0.00170 \\ \hline 1.29000 & 0.40150 & 0.00180 \\ \hline 1.30000 & 0.40320 & 0.00170 \\ \hline 1.31000 & 0.40490 & 0.00170 \\ \hline 1.32000 & 0.40660 & 0.00170 \\ \hline 1.33000 & 0.40830 & 0.00170 \\ \hline 1.34000 & 0.41010 & 0.00180 \\ \hline 1.35000 & 0.41190 & 0.00180 \\ \hline \end{array}\)

Assume that you do not have vales of the area beyond \(z=1.2\) in the table; i.e. you may need to use the extrapolation.

Check your calculated value and compare with the values in the table \([for\ z=1.3\ and\ H=0.05]\).

Calculate your percentage of error in the estimation.

How do I solve this problem using extrapolation?

\(\begin{array}{|c|c|}\hline Z+H & Prob. & Extrapolation \\ \hline 1.20000 & 0.38490 & Differences \\ \hline 1.21000 & 0.38690 & 0.00200 \\ \hline 1.22000 & 0.38880 & 0.00190 \\ \hline 1.23000 & 0.39070 & 0.00190 \\ \hline 1.24000 & 0.39250 & 0.00180 \\ \hline 1.25000 & 0.39440 & 0.00190 \\ \hline 1.26000 & 0.39620 & 0.00180 \\ \hline 1.27000 & 0.39800 & 0.00180 \\ \hline 1.28000 & 0.39970 & 0.00170 \\ \hline 1.29000 & 0.40150 & 0.00180 \\ \hline 1.30000 & 0.40320 & 0.00170 \\ \hline 1.31000 & 0.40490 & 0.00170 \\ \hline 1.32000 & 0.40660 & 0.00170 \\ \hline 1.33000 & 0.40830 & 0.00170 \\ \hline 1.34000 & 0.41010 & 0.00180 \\ \hline 1.35000 & 0.41190 & 0.00180 \\ \hline \end{array}\)

asked 2021-05-29

You randomly survey students at your school about what type of books they like to read. The two-way table shows your results. Find and interpret the marginal frequencies.

\(\begin{array}{|c|c|}\hline & \text{Fiction} \\ \hline & \text{Likes} & \text{Dislikes} \\ \hline \text{Non Fiction} \\ \hline \text{Likes} & 26 & 22 \\ \hline \text{Dislikes} & 20 & 2 \\ \hline \end{array}\)

asked 2021-11-19

Here is partial output from a simple regression analysis.

The regression equation is

EAFE = 4.76 + 0.663 S&P

Analysis of Variance

\[\begin{array}{cc} Source & DF & SS & MS & F & P \\ Regression & 1 & 3445.9 & 3445.9 & 9.50 & 0.005 \\ Residual \ Error & & & & & \\ Total & 29 & 13598.3 & & & \\ \end{array}\]

Calculate the values of the following:

The regression standard error, \(\displaystyle{s}_{{{e}}}\) (Round to 3 decimal places)

The coefficient of determination, \(\displaystyle{r}^{{{2}}}\) (Round to 4 decimal places)

The correlation coefficient, r (Round to 4 decimal places)

The regression equation is

EAFE = 4.76 + 0.663 S&P

Analysis of Variance

\[\begin{array}{cc} Source & DF & SS & MS & F & P \\ Regression & 1 & 3445.9 & 3445.9 & 9.50 & 0.005 \\ Residual \ Error & & & & & \\ Total & 29 & 13598.3 & & & \\ \end{array}\]

Calculate the values of the following:

The regression standard error, \(\displaystyle{s}_{{{e}}}\) (Round to 3 decimal places)

The coefficient of determination, \(\displaystyle{r}^{{{2}}}\) (Round to 4 decimal places)

The correlation coefficient, r (Round to 4 decimal places)