Rec tan gular coordinates \(= ( x, y) = (-5, 2)\) Polar coordinates \(= (r, \theta)\) Then, formula for finding r and theta, is given by - \(r = \sqrt{x^2 + y^2}\)

\(r = \sqrt{(-5)^2 + (2)^2}\)

\(r = \sqrt{(25 + 4)}\)

\(r = \sqrt{29}\)

\(r = 5.385\) And, \(\theta = \tan^{-1} (\frac{y}{x})\)

\(\theta = \tan^{-1} (\frac{2}{-5})\)

\(\theta = \tan^{-1} (\frac{2}{5}) [\tan^{-1} (-x) = - \tan^{-1} (x)]\)

\(\theta = -0.380\) radians Polar coordinates \(= (r, \theta) = (5.385, - 0.380)\)