Question

Use the one-standard-deviation x2x^{2}-test and the one-standard-deviation x^{2}-interval procedure to conduct the required hypothesis test and obtain

Confidence intervals
ANSWERED
asked 2021-05-14

Use the one-standard-deviation x2\(\displaystyle{x}^{{{2}}}\)-test and the one-standard-deviation \(\displaystyle{x}^{{{2}}}\)-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. s=3 and n=10.
a. \(\displaystyle{H}_{{{0}}}:\sigma={4},{H}_{{{3}}}:\sigma{<}{4},\alpha={0.05}\).
b. 90% confidence interval

Answers (1)

2021-05-15
a. Do not reject \(\displaystyle{H}_{{{0}}}\)
b. 2.188 to 4.936
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-06-25

Use the one-standard-deviation \(\displaystyle{x}^{{{2}}}\)-test and the one-standard-deviation \(\displaystyle{x}^{{{2}}}\)-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. \(s=2\) and \(n=10\)
a. \(\displaystyle{H}_{{{0}}}:\sigma={4},{H}_{{{\left\lbrace{a}\right\rbrace}}}:\sigma{<}{4},\alpha={0.05}\).
b. \(90\%\) confidence interval

asked 2021-06-04

Use the one-standard-deviation \(\displaystyle{x}^{{{2}}}\)-test and the one-standard-deviation \(\displaystyle{x}^{{{2}}}\)-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. \(s=6\) and \(n=26\)
a. \(\displaystyle{H}_{{{0}}}:\sigma={5},{H}_{{\mathrm{a}}}:\sigma{>}{5},\alpha={0.01}\).
b. 98% confidence interval.

asked 2021-05-22

Use the one-standard-deviation \(\displaystyle{x}^{{{2}}}\) -test and the one-standard-deviation \(\displaystyle{x}^{{{2}}}\)-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. \(s=5\) and \(n=20\)
a. \(\displaystyle{H}_{{{0}}}:σ={6},{H}_{{{a}}}:σ≠{6},α={0.05}\).
b. 95% confidence interval

asked 2021-06-19
Use the one-standard-deviation \(\displaystyle{x}^{{{2}}}\)-test and the one-standard-deviation \(\displaystyle{x}^{{{2}}}\)-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. s=7 and n=26
a. \(\displaystyle{H}_{{{0}}}:\sigma={5},{H}_{{{m}{a}{t}{h}{r}{m}{\left\lbrace{a}\right\rbrace}}}:\sigma{>}{5},\alpha={0.01}\).
b. 98% confidence interval.
...