According to given data in the question

\(\displaystyle{x}={2}{\sin{{t}}}\)

\(\displaystyle{y}={2}{\cos{{t}}}\)

We know the formula for a radius of a circle

\(\displaystyle{r}=\sqrt{{{a}^{{2}}+{b}^{{2}}}}\)

\(\displaystyle{r}=\sqrt{{{\left({2}{\sin{{t}}}\right)}^{{2}}+{\left({2}{\cos{{t}}}^{{2}}\right)}}}\)

\(\displaystyle{r}=\sqrt{{{4}{{\sin}^{{2}}{t}}+{4}{{\cos}^{{2}}{t}}}}\)

Using trigonometric identity,

\(\displaystyle{{\cos}^{{2}}{t}}+{4}{{\sin}^{{2}}{t}}={1}\)

\(\displaystyle{r}={4}\cdot{1}\)

r=2 unit

Motion= clock wise

the time for complete \(\displaystyle{1}={2}\pi={2}\cdot{3.14}={6.28}\)

\(\displaystyle.:{t}={6.28}\)