Question

For each of the pairs of matrices that follow, determine whether it is possible to multiply the first matrix times the second. If it is possible, perform the multiplication. begin{bmatrix}1 & 4&3 0 & 1&40&0&2 end{bmatrix}begin{bmatrix}3 & 2 1 & 14&5 end{bmatrix}

Matrices
ANSWERED
asked 2020-10-27
For each of the pairs of matrices that follow, determine whether it is possible to multiply the first matrix times the second. If it is possible, perform the multiplication.
\(\begin{bmatrix}1 & 4&3 \\0 & 1&4\\0&0&2 \end{bmatrix}\begin{bmatrix}3 & 2 \\1 & 1\\4&5 \end{bmatrix}\)

Answers (1)

2020-10-28
Given,
\(\begin{bmatrix}1 & 4&3 \\0 & 1&4\\0&0&2 \end{bmatrix}\begin{bmatrix}3 & 2 \\1 & 1\\4&5 \end{bmatrix}\)
Here the order of first matrix is (\(3 \times 3\)) and the order of second matrix is (\(3 \times 2\)), therefore the number of columns of first matrix(3) is equal to number of rows of second matrix(3).
Hence multiplication of these matrices is possible.
Therefore,
\(\begin{bmatrix}1 & 4&3 \\0 & 1&4\\0&0&2 \end{bmatrix}\begin{bmatrix}3 & 2 \\1 & 1\\4&5 \end{bmatrix}=\begin{bmatrix}1(3)+4(1)+3(4) & 1(2)+4(1)+3(5) \\0(3)+1(1)+4(4) & 0(2)+1(1)+4(5)\\0(3)+0(1)+2(4)&0(2)+0(1)+2(5) \end{bmatrix}\)
\(=\begin{bmatrix}19 & 21 \\17 & 21\\8&10 \end{bmatrix}\)
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2020-12-16
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA. A=\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix} , B=\begin{bmatrix}1 & 2 & 3 \end{bmatrix}
asked 2020-12-25

The \(2 \times 2 \) matrices A and B below are related to matrix C by the equation: \(C=3A-2B\). Which of the following is matrix C.
\(A=\begin{bmatrix}3 & 5 \\-2 & 1 \end{bmatrix} B=\begin{bmatrix}-4 & 5 \\2 & 1 \end{bmatrix}\)
\(\begin{bmatrix}-1 & 5 \\2 & 1 \end{bmatrix}\)
\(\begin{bmatrix}-18 & 5 \\10 & 1 \end{bmatrix}\)
\(\begin{bmatrix}18 & -5 \\-10 & -1 \end{bmatrix}\)
\(\begin{bmatrix}1 & -5 \\-2 & -1 \end{bmatrix}\)

asked 2020-12-07

Let \(A=\begin{bmatrix}1 & 2 \\-1 & 1 \end{bmatrix} \text{ and } C=\begin{bmatrix}-1 & 1 \\2 & 1 \end{bmatrix}\)
a)Find elementary matrices \(E_1 \text{ and } E_2\) such that \(C=E_2E_1A\)
b)Show that is no elementary matrix E such that \(C=EA\)

asked 2021-03-02

Find a \(3 \times 3\) matrix A that has eigenvalues \(\lambda=0\) , 4 ,-4 with corresponding eigenvectors
\(\begin{bmatrix}0 \\1\\-1 \end{bmatrix},\begin{bmatrix}1 \\-1\\1 \end{bmatrix},\begin{bmatrix}0 \\1\\1 \end{bmatrix}\)

asked 2021-01-04
Matrix multiplication is pretty tough- so i will cover that in class. In the meantime , compute the following if
\(A=\begin{bmatrix}2&1&1 \\-1&-1&4 \end{bmatrix} , B=\begin{bmatrix}0 & 2 \\-4 & 1\\2&-3 \end{bmatrix} , C=\begin{bmatrix}6 & -1 \\3 & 0\\-2&5 \end{bmatrix} , D=\begin{bmatrix}2 & -3&4 \\-3& 1&-2 \end{bmatrix}\)
If the operation is not possible , write NOT POSSIBLE and be able to explain why
a)A+B
b)B+C
c)2A
asked 2021-02-22

Reduce the following matrices to row echelon form and row reduced echelon forms:
\((i)\begin{bmatrix}1 & p & -1 \\ 2 & 1 & 7 \\ -3 & 3 & 2 \end{bmatrix} (ii) \begin{bmatrix}p & -1 & 7&2 \\ 2 & 1 & -5 & 3 \\ 1 & 3 & 2 & 0 \end{bmatrix}\)
*Find also the ra
of these matrices.
*Notice: \(p=4\)

asked 2021-01-10

If possible , find \(2A-4B\)
\(A=\begin{bmatrix}-3 & 5 & -6 \\ 3 & -5 & -1 \end{bmatrix} , B=\begin{bmatrix}-6 & 8 & -3 \\ 3 & 6 & -2 \end{bmatrix}\)
a. \(\begin{bmatrix}-30 & 42 & -24 \\ 18 & 14 & -10 \end{bmatrix}\)
b. not possible
c. \(\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}\)
d. \(\begin{bmatrix} -9 & 13 & -9 \\ 6 & 1 & -3 \end{bmatrix}\)
c. \(\begin{bmatrix} 18 & -22 & 0 \\ -6 & -34 & 6 \end{bmatrix}\)

asked 2020-11-30

Let M be the vector space of \(2 \times 2\) real-valued matrices.
\(M=\begin{bmatrix}a & b \\c & d \end{bmatrix}\)
and define \(M^{\#}=\begin{bmatrix}d & b \\c & a \end{bmatrix}\) Characterize the matrices M such that \(M^{\#}=M^{-1}\)

asked 2021-01-28
Multiply the given matrix. After performing the multiplication, describe what happens to the elements in the first matrix. \(\begin{bmatrix}a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix}\)
asked 2020-11-30
To illustrate the multiplication of matrices, and also the fact that matrix multiplication is not necessarily commutative, consider the matrices
\(A=\begin{bmatrix}1 & -2&1 \\0 & 2&-1\\2&1&1 \end{bmatrix}\)
\(B=\begin{bmatrix}2 & 1&-1 \\1 & -1&0\\2&-1&1 \end{bmatrix}\)
...