For each of the pairs of matrices that follow, determine whether it is possible to multiply the first matrix times the second. If it is possible, perform the multiplication. begin{bmatrix}1 & 4&3 0 & 1&40&0&2 end{bmatrix}begin{bmatrix}3 & 2 1 & 14&5 end{bmatrix}

Question
Matrices
asked 2020-10-27
For each of the pairs of matrices that follow, determine whether it is possible to multiply the first matrix times the second. If it is possible, perform the multiplication.
\(\begin{bmatrix}1 & 4&3 \\0 & 1&4\\0&0&2 \end{bmatrix}\begin{bmatrix}3 & 2 \\1 & 1\\4&5 \end{bmatrix}\)

Answers (1)

2020-10-28
Given,
\(\begin{bmatrix}1 & 4&3 \\0 & 1&4\\0&0&2 \end{bmatrix}\begin{bmatrix}3 & 2 \\1 & 1\\4&5 \end{bmatrix}\)
Here the order of first matrix is (\(3 \times 3\)) and the order of second matrix is (\(3 \times 2\)), therefore the number of columns of first matrix(3) is equal to number of rows of second matrix(3).
Hence multiplication of these matrices is possible.
Therefore,
\(\begin{bmatrix}1 & 4&3 \\0 & 1&4\\0&0&2 \end{bmatrix}\begin{bmatrix}3 & 2 \\1 & 1\\4&5 \end{bmatrix}=\begin{bmatrix}1(3)+4(1)+3(4) & 1(2)+4(1)+3(5) \\0(3)+1(1)+4(4) & 0(2)+1(1)+4(5)\\0(3)+0(1)+2(4)&0(2)+0(1)+2(5) \end{bmatrix}\)
\(=\begin{bmatrix}19 & 21 \\17 & 21\\8&10 \end{bmatrix}\)
0

Relevant Questions

asked 2021-01-04
Matrix multiplication is pretty tough- so i will cover that in class. In the meantime , compute the following if
\(A=\begin{bmatrix}2&1&1 \\-1&-1&4 \end{bmatrix} , B=\begin{bmatrix}0 & 2 \\-4 & 1\\2&-3 \end{bmatrix} , C=\begin{bmatrix}6 & -1 \\3 & 0\\-2&5 \end{bmatrix} , D=\begin{bmatrix}2 & -3&4 \\-3& 1&-2 \end{bmatrix}\)
If the operation is not possible , write NOT POSSIBLE and be able to explain why
a)A+B
b)B+C
c)2A
asked 2021-01-28
Multiply the given matrix. After performing the multiplication, describe what happens to the elements in the first matrix. \(\begin{bmatrix}a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix}\)
asked 2020-11-30
To illustrate the multiplication of matrices, and also the fact that matrix multiplication is not necessarily commutative, consider the matrices
\(A=\begin{bmatrix}1 & -2&1 \\0 & 2&-1\\2&1&1 \end{bmatrix}\)
\(B=\begin{bmatrix}2 & 1&-1 \\1 & -1&0\\2&-1&1 \end{bmatrix}\)
asked 2021-02-02
Given the matrices
\(A=\begin{bmatrix}-1 & 3 \\2 & -1 \\ 3&1 \end{bmatrix} \text{ and } B=\begin{bmatrix}0 & -2 \\1 & 3 \\ 4 & -3 \end{bmatrix}\) find the \(3 \times 2\) matrix X that is a solution of the equation. 8X+A=B
asked 2021-02-09
A two-sample inference deals with dependent and independent inferences. In a two-sample hypothesis testing problem, underlying parameters of two different populations are compared. In a longitudinal (or follow-up) study, the same group of people is followed over time. Two samples are said to be paired when each data point in the first sample is matched and related to a unique data point in the second sample.
This problem demonstrates inference from two dependent (follow-up) samples using the data from the hypothetical study of new cases of tuberculosis (TB) before and after the vaccination was done in several geographical areas in a country in sub-Saharan Africa. Conclusion about the null hypothesis is to note the difference between samples.
The problem that demonstrates inference from two dependent samples uses hypothetical data from the TB vaccinations and the number of new cases before and after vaccination. PSK\begin{array}{|c|c|} \hline Geographical\ regions & Before\ vaccination & After\ vaccination\\ \hline 1 & 85 & 11\\ \hline 2 & 77 & 5\\ \hline 3 & 110 & 14\\ \hline 4 & 65 & 12\\ \hline 5 & 81 & 10\\\hline 6 & 70 & 7\\ \hline 7 & 74 & 8\\ \hline 8 & 84 & 11\\ \hline 9 & 90 & 9\\ \hline 10 & 95 & 8\\ \hline \end{array}ZSK
Using the Minitab statistical analysis program to enter the data and perform the analysis, complete the following: Construct a one-sided \(\displaystyle{95}\%\) confidence interval for the true difference in population means. Test the null hypothesis that the population means are identical at the 0.05 level of significance.
asked 2020-12-27
Perform the indicated matrix operations B - A given that A, B, and C are defined as follows. If an operation is not defined, state the reason.
\(A=\begin{bmatrix}4 & 0 \\-3 & 5 \\ 0 & 1 \end{bmatrix} B=\begin{bmatrix}5 & 1 \\-2 & -2 \end{bmatrix} C=\begin{bmatrix}1 & -1 \\-1 & 1 \end{bmatrix}\)
asked 2020-12-21
Enter the expression that would produce the answer (do include the answer) for row 1 column 1 of the multiplied matrix \(A \cdot B\):
List the expression in order with the original values using \(\cdot\) for multiplication.
then find \(A \cdot B\)
If \(A=\begin{bmatrix}3 & 7 \\2 & 4 \end{bmatrix} \text{ and } B=\begin{bmatrix}-3 & 6 \\4 & -2 \end{bmatrix}\)
asked 2021-03-02
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA.
\(A=\begin{bmatrix}3 & -2 \\1 & 5\end{bmatrix} , B=\begin{bmatrix}0 & 0 \\5 & -6 \end{bmatrix}\)
asked 2021-03-02
For Exercise , perform the indicated operations if possible.
\(A=\begin{bmatrix}4 & 1&-3 \\2 & 4 &6\end{bmatrix} , B=\begin{bmatrix}1 & 9 \\0 & -1\\3&5 \end{bmatrix} , C=\begin{bmatrix}0 & 1&-4 \\2 & -1 &8\end{bmatrix}\)
A+B=?
asked 2020-11-14
Multiply the Following matrices:
\(\begin{bmatrix}2 & 3 \\1 & 0 \end{bmatrix} \times \begin{bmatrix}4 & 1 \\2 & 1 \end{bmatrix}\)
\(\begin{bmatrix}1 & 3 \\4 & 5\\1&2 \end{bmatrix} \times \begin{bmatrix}2 & -1&4 \\3 & 1&0 \end{bmatrix}\)
...