# Radical and Exponents Simplify the expression frac{8r^(1/2)s^-3}{2r^-2 x^4}

Question
Radical and Exponents Simplify the expression $$\frac{8r^(1/2)s^-3}{2r^-2 x^4}$$

2020-11-23
The given algebraic expression is, $$\frac{8r^{1/2}s^-3}{2r^-2 x^4}$$ Calculation: Simplify the given algebraic expression. $$\frac{8r^{1//2}s^-3}{2r^-2 x^4} = 4r^{\frac{1}{2}-(-2)}s^{-3-4}$$
$$[\therefore] \frac{a^m}{a^n} = a^{m-n}$$
$$= 4r^{\frac{1}{2} +2} s^{-7}$$
$$= 4r^{\frac{5}{2}} s^-7$$ Therefore, the simplification of the given algebraic expression is $$4r^{\frac{5}{2}}s^{-7}$$.

### Relevant Questions

Radical and Exponents Simplify the expression $$\frac{(ab^2 c^-3}{2a^3 b^-4)}^{-2}$$
Write each radical expression using exponents and each exponential expression using radicals. Radical expression Exponential expression $$\sqrt[3]{y^{4}}$$
Simplify each of the following expressions. Be sure that your answer has no negative or fractional exponents. $$a*(1/81)^(-1/4)b*x^(-2)y^(-4)c*(2x)^(-2)(16x^2y)^(1/2)$$
Radical simplify the expression, and eliminate any negative exponents(s). Assume that all letters denote positive numbers.
a) $$\displaystyle\sqrt{{{6}}}{\left\lbrace{y}^{{{5}}}\right\rbrace}\sqrt{{{3}}}{\left\lbrace{y}^{{{2}}}\right\rbrace}$$
b) $$\displaystyle{\left({5}\sqrt{{{3}}}{\left\lbrace{x}\right\rbrace}\right)}{\left({2}\sqrt{{{4}}}{\left\lbrace{x}\right\rbrace}\right)}$$
Rewrite the following expressions without using radicals or negative exponents. Simplify when possible. $$\displaystyle{\sqrt[{{5}}]{{{x}^{{20}}{y}^{{-{{4}}}}}}}$$
Simplify: $$\displaystyle{\left({7}^{{5}}\right)}{\left({4}^{{5}}\right)}$$. Write your answer using an exponent.
Explain in words how to simplify: $$\displaystyle{\left({153}^{{2}}\right)}^{{7}}.$$
Is the statement $$\displaystyle{\left({10}^{{5}}\right)}{\left({4}^{{5}}\right)}={14}^{{5}}$$ true?
$$\displaystyle{\frac{{{x}^{{{4}}}{\left({3}{x}\right)}^{{{2}}}}}{{{x}^{{{3}}}}}}$$
Simplify the following. Write answers without negative exponnents. $$\displaystyle{\left({4}{x}^{{2}}{y}^{{-{{3}}}}\right)}^{{-{{2}}}}$$
$$\displaystyle∫{\left(\frac{{{2}{x}^{{3}}}}{{{1}+{x}^{{4}}}}\right)}{\left.{d}{x}\right.}$$