We are given the function: \(y=0.99^t\)

The fuction is of the form \(y=a(1-r)^t\), where \(1-r<1,\) so it represents exponential decay. We determine the rate of decay: \(1-r=0.99\)

\(r=1-0.99\)

\(r=0.01\)

asked 2021-06-19

Determine whether the function represents exponential growth or exponential decay. Identify the percent rate of change. \(\displaystyle{y}={0.99}^{{t}}\)

asked 2021-06-21

Determine whether the function represents exponential growth or exponential decay. Identify the percent rate of change. \(\displaystyle{f{{\left({t}\right)}}}={80}{\left(\frac{{3}}{{5}}\right)}^{{t}}\)

asked 2021-05-31

asked 2021-05-30

Determine whether the function represents exponential growth or exponential decay. Identify the percent rate of change.

\(\displaystyle{f{{\left({t}\right)}}}=\frac{{1}}{{3}}{\left({1.26}\right)}^{{t}}\)

\(\displaystyle{f{{\left({t}\right)}}}=\frac{{1}}{{3}}{\left({1.26}\right)}^{{t}}\)

asked 2021-07-04

\(\displaystyle{f{{\left({t}\right)}}}={80}{\left(\frac{{3}}{{5}}\right)}^{{t}}\)

asked 2021-05-29

Determine whether each function represents exponential growth or exponential decay. Identify the percent rate of change.

\(\displaystyle{g{{\left({t}\right)}}}={2}{\left({\frac{{{5}}}{{{4}}}}\right)}^{{t}}\)

\(\displaystyle{g{{\left({t}\right)}}}={2}{\left({\frac{{{5}}}{{{4}}}}\right)}^{{t}}\)

asked 2020-12-05

asked 2021-02-09

asked 2021-01-13

asked 2021-07-05