The converse of a theorem reverses the evidence and the conclusion. The Pythagorean Theorem states that in a right triangle with legs of a and b, and

allhvasstH 2021-06-16 Answered
The converse of a theorem reverses the evidence and the conclusion. The Pythagorean Theorem states that in a right triangle with legs of a and b, and hypotenuse c, that \(\displaystyle{a}^{{2}}+{b}^{{2}}={c}^{{2}}\)
a. State the converse of the Pythagorean Theorem.
b. Look back at your work from the problem. What can you conclude about a triangle if \(\displaystyle{a}^{{2}}+{b}^{{2}}={c}^{{2}}\)?
c. Why is this not a proof of the converse of the Pythagorean Theorem?

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

Yusuf Keller
Answered 2021-06-17 Author has 15883 answers

a The converse of the Pythagorean Theorem states that if the sum of the squares of the lengths of the two shorter sides of a triangle equals the square of the length of the longest side, then the triangle is a right triangle.

b. When \(a^2 +b^2 = c^2\), the triangle is a right triangle.

c. Problem \(9-51\) is not a proof of the converse of the Pythagorean Theorem because it only provided examples where some gave conclusions that the triangle are actite or obtuse.

Have a similar question?
Ask An Expert
22
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-06-14
The converse of a theorem reverses the evidence and the conclusion. The Pythagorean Theorem states that in a right triangle with legs of a and b, and hypotenuse c, that \(\displaystyle{a}^{{2}}+{b}^{{2}}={c}^{{2}}\)
a. State the converse of the Pythagorean Theorem.
b. Look back at your work from the problem. What can you conclude about a triangle if \(\displaystyle{a}^{{2}}+{b}^{{2}}={c}^{{2}}\)?
c. Why is this not a proof of the converse of the Pythagorean Theorem?
asked 2021-05-22
Sheila is in Ms. Cai's class . She noticed that the graph of the perimeter for the "dented square" in problem 3-61 was a line . "I wonder what the graph of its area looks like ," she said to her teammates .
a. Write an equation for the area of the "dented square" if xx represents the length of the large square and yy represents the area of the square.
b. On graph paper , graph the rule you found for the area in part (a). Why does a 1st−quadrant graph make sense for this situation? Are there other values of xx that cannot work in this situation? Be sure to include an indication of this on your graph, as necessary.
c. Explain to Sheila what the graph of the area looks like.
d. Use the graph to approximate xx when the area of the shape is 20 square units.
asked 2021-01-17
A new thermostat has been engineered for the frozen food cases in large supermarkets. Both the old and new thermostats hold temperatures at an average of \(25^{\circ}F\). However, it is hoped that the new thermostat might be more dependable in the sense that it will hold temperatures closer to \(25^{\circ}F\). One frozen food case was equipped with the new thermostat, and a random sample of 21 temperature readings gave a sample variance of 5.1. Another similar frozen food case was equipped with the old thermostat, and a random sample of 19 temperature readings gave a sample variance of 12.8. Test the claim that the population variance of the old thermostat temperature readings is larger than that for the new thermostat. Use a \(5\%\) level of significance. How could your test conclusion relate to the question regarding the dependability of the temperature readings? (Let population 1 refer to data from the old thermostat.)
(a) What is the level of significance?
State the null and alternate hypotheses.
\(H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}\)
(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)
What are the degrees of freedom?
\(df_{N} = ?\)
\(df_{D} = ?\)
What assumptions are you making about the original distribution?
The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.
(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?
At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
(e) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.
asked 2021-03-22
A box is sliding with a speed of 4.50 m/s on a horizontal surface when, at point P, it encounters a rough section. On the rough section, the coefficient of friction is not constant but starts at .100 at P and increases linerly with distance past P, reaching a value of .600 at 12.5 m past point P. (a) Use the work energy theorem to find how far this box slides before stopping. (b) What is the coefficient of friction at the stopping point? (c) How far would the box have slid iff the friciton coefficient didn't increase, but instead had the constant value of .1?
asked 2021-05-04

When a gas is taken from a to c along the curved path in the figure (Figure 1) , the work done by the gas is W = -40 J and the heat added to the gas is Q = -140 J . Along path abc, the work done by the gas is W = -50 J . (That is, 50 J of work is done on the gas.)
I keep on missing Part D. The answer for part D is not -150,150,-155,108,105( was close but it said not quite check calculations)
Part A
What is Q for path abc?
Express your answer to two significant figures and include the appropriate units.
Part B
f Pc=1/2Pb, what is W for path cda?
Express your answer to two significant figures and include the appropriate units.
Part C
What is Q for path cda?
Express your answer to two significant figures and include the appropriate units.
Part D
What is Ua?Uc?
Express your answer to two significant figures and include the appropriate units.
Part E
If Ud?Uc=42J, what is Q for path da?
Express your answer to two significant figures and include the appropriate units.
asked 2021-08-03
Use symbols to write the logical form of the following arguments. If valid, identify the rule of inference that guarantees its validity. Otherwise, state whether the converse or the inverse error has been made.
If you study hard for your discrete math final you will get an A.
Jane got an A on her discrete math final.
Therefore, Jane must have studied hard.

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question
...