Question

2021-02-25

asked 2020-11-08

Testing for a Linear Correlation. In Exercises 13–28, construct a scatterplot, and find the value of the linear correlation coefficient r. Also find the P-value or the critical values of r from Table A-6. Use a significance level of \(\alpha = 0.05\). Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables. (Save your work because the same data sets will be used in Section 10-2 exercises.)
Lemons and Car Crashes Listed below are annual data for various years. The data are weights (metric tons) of lemons imported from Mexico and U.S. car crash fatality rates per 100,000 population [based on data from “The Trouble with QSAR (or How I Learned to Stop Worrying and Embrace Fallacy),” by Stephen Johnson, Journal of Chemical Information and Modeling, Vol. 48, No. 1]. Is there sufficient evidence to conclude that there is a linear correlation between weights of lemon imports from Mexico and U.S. car fatality rates? Do the results suggest that imported lemons cause car fatalities?
\(\begin{matrix} \text{Lemon Imports} & 230 & 265 & 358 & 480 & 530\\ \text{Crashe Fatality Rate} & 15.9 & 15.7 & 15.4 & 15.3 & 14.9\\ \end{matrix}\)

asked 2021-02-11

Determine the algebraic modeling which of the following data sets are linear and which are exponential. For the linear sets, determine the slope. For the exponential sets, determine the growth factor or the decay factor

a) \(\begin{array}{|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline y & \frac{1}{9} & \frac{1}{3} & 1 & 3 & 9 & 27 & 81 \\ \hline \end{array}\)

b) \(\begin{array}{|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline y & 2 & 2.6 & 3.2 & 3.8 & 4.4 & 5.0 & 5.6 \\ \hline \end{array}\)

c) \(\begin{array}{|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline y & 3.00 & 5.0 & 7 & 9 & 11 & 13 & 15 \\ \hline \end{array}\)

d) \(\begin{array}{|c|c|}\hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline y & 5.25 & 2.1 & 0.84 & 0.336 & 0.1344 & 0.5376 & 0.021504 \\ \hline \end{array}\)

asked 2021-01-25

You just bought a new car for $22,000. Assume that the value of your new car depreciates at a constant \(12\ \%\) per year.

1) The decay rate is square

2) The decay factor is square

3) The equation of the function that represents the value, V(t), of the car in dollars t years from now is \(V\ =\ \Box\) (Write an expression that completes the function's equation.)

asked 2021-06-06

f(x) -2-190.5-2 -1511.5 00.4243