Question

One type of Iodine disintegrates continuously at a constant rate of 8.6% per day. Suppose the original amount,P_0, is 10 grams, and let be measured in

Modeling
ANSWERED
asked 2021-02-10
One type of Iodine disintegrates continuously at a constant rate of 8.6% per day. Suppose the original amount,\(P_0\), is 10 grams, and let be measured in days. Because the Iodine is decaying continuously at a constant rate, we use the model \(P = P_0e^{kt}\) for the decay equation, where k is the rate of continuous decay. Using the given information, write the decay equation for this type of Iodine.

Answers (1)

2021-02-11

The model of the decay equation is given by \(P = P_0e^{kt}\) Here \(P_0 = 10\) grams of iodine \(k = \text{rate of continuous rate} = - 8.6%\) { negative sign implies the decay} Which implies \(k = - 0.086\) t is measured in days Therefore, the decay equation for this type of Iodine is \(P = 10e^{−0.086t}\)

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2020-10-28
Determine the algebraic modeling a.
One type of Iodine disintegrates continuously at a constant rate of \(\displaystyle{8.6}\%\) per day.
Suppose the original amount, \(\displaystyle{P}_{{0}}\), is 10 grams, and let t be measured in days.
Because the Iodine is decaying continuously at a constant rate, we use the model \(\displaystyle{P}={P}_{{0}}{e}^{k}{t}\) for the decay equation, where k is the rate of continuous decay.
Using the given information, write the decay equation for this type of Iodine.
b.
Use your equation to determine the half-life ofthis type of Fodine, That is, find ‘out how many days it will take for half of the original amount to be left. Show an algebraic solution using logs.
asked 2020-10-20
One type of lodine disintegrates continuously at a constant rate of 8.6% per day. Suppose the original amount, P0, is 10 grams, and let be measured in days. Because the lodine is decaying continuously at a constant rate, we use the model P = P0e for the decay equation, where k is the rate of continuous decay. Using the given information, write the decay equation for this type of lodine.
asked 2021-05-09
The dominant form of drag experienced by vehicles (bikes, cars,planes, etc.) at operating speeds is called form drag. Itincreases quadratically with velocity (essentially because theamount of air you run into increase with v and so does the amount of force you must exert on each small volume of air). Thus
\(\displaystyle{F}_{{{d}{r}{u}{g}}}={C}_{{d}}{A}{v}^{{2}}\)
where A is the cross-sectional area of the vehicle and \(\displaystyle{C}_{{d}}\) is called the coefficient of drag.
Part A:
Consider a vehicle moving with constant velocity \(\displaystyle\vec{{{v}}}\). Find the power dissipated by form drag.
Express your answer in terms of \(\displaystyle{C}_{{d}},{A},\) and speed v.
Part B:
A certain car has an engine that provides a maximum power \(\displaystyle{P}_{{0}}\). Suppose that the maximum speed of thee car, \(\displaystyle{v}_{{0}}\), is limited by a drag force proportional to the square of the speed (as in the previous part). The car engine is now modified, so that the new power \(\displaystyle{P}_{{1}}\) is 10 percent greater than the original power (\(\displaystyle{P}_{{1}}={110}\%{P}_{{0}}\)).
Assume the following:
The top speed is limited by air drag.
The magnitude of the force of air drag at these speeds is proportional to the square of the speed.
By what percentage, \(\displaystyle{\frac{{{v}_{{1}}-{v}_{{0}}}}{{{v}_{{0}}}}}\), is the top speed of the car increased?
Express the percent increase in top speed numerically to two significant figures.
asked 2021-03-07
This problem is about the equation
dP/dt = kP-H , P(0) = Po,
where k > 0 and H > 0 are constants.
If H = 0, you have dP/dt = kP , which models expontialgrowth. Think of H as a harvesting term, tending to reducethe rate of growth; then there ought to be a value of H big enoughto prevent exponential growth.
Problem: find acondition on H, involving \(\displaystyle{P}_{{0}}\) and k, that will prevent solutions from growing exponentially.
...