\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}}={\left(-{5}{\ln{{4}}}\right)}{4}^{{-{5}{x}+{2}}}\)

Question

asked 2021-06-24

Find derivatives of the functions defined as follows.

\(\displaystyle{y}={3}\dot{{\lbrace}}{4}^{{{x}^{{{2}}}+{2}}}\)

\(\displaystyle{y}={3}\dot{{\lbrace}}{4}^{{{x}^{{{2}}}+{2}}}\)

asked 2021-05-01

Find derivatives of the functions defined as follows.

\(\displaystyle{y}=-{10}^{{{3}{x}^{{{2}}}-{4}}}\)

\(\displaystyle{y}=-{10}^{{{3}{x}^{{{2}}}-{4}}}\)

asked 2021-06-21

Find derivatives of the functions defined as follows.

\(\displaystyle{f{{\left({z}\right)}}}={\left({2}{z}+{e}^{{-{z}^{{{2}}}}}\right)}^{{{2}}}\)

\(\displaystyle{f{{\left({z}\right)}}}={\left({2}{z}+{e}^{{-{z}^{{{2}}}}}\right)}^{{{2}}}\)

asked 2021-05-16

Find derivatives of the functions defined as follows.

\(\displaystyle{p}={\frac{{{1000}}}{{{9}+{4}{e}^{{-{0.2}{t}}}}}}\)

\(\displaystyle{p}={\frac{{{1000}}}{{{9}+{4}{e}^{{-{0.2}{t}}}}}}\)