Given:

\( \begin{array}{ll|r} a & b & 50 \\ c & d & 50 \\ \hline 60 & 40 & 100 \end{array}\)

We then need to find a set of values a, 6,c and d such that row totals are 50 and the column totals are 60 and 40 respectively. This then implies that the following equations need to be satisfied:

a+b=50

c+d=50

a+c=60

b+d=40

One possible set of values for a, b, c and d is then a = 30, b = 30, c = 20 and d= 20.

\( \begin{array}{ll|r} 30 & 30 & 50 \\ 20 & 20 & 50 \\ \hline 60 & 40 & 100 \end{array}\)

Another possible set of values fora, 8, c and dis then a = 40, b = 10, c = 30 and d = 50.

\( \begin{array}{ll|r} 40 & 10 & 50 \\ 20 & 30 & 50 \\ \hline 60 & 40 & 100 \end{array}\)