Ask question

# a) determine the type of conic b) find the standard form of the equation Parabolas: vertex, focus, directrix Circles: Center, radius Ellipses: center, vertices, co-vertices, foci Hyperbolas: center, vertices, co-vertices, foci, asymptotes 16x^2 + 64x - 9y^2 + 18y - 89 = 0 # a) determine the type of conic b) find the standard form of the equation Parabolas: vertex, focus, directrix Circles: Center, radius Ellipses: center, vertices, co-vertices, foci Hyperbolas: center, vertices, co-vertices, foci, asymptotes 16x^2 + 64x - 9y^2 + 18y - 89 = 0

Question
Conic sections asked 2021-02-05
a) determine the type of conic b) find the standard form of the equation Parabolas: vertex, focus, directrix Circles: Center, radius Ellipses: center, vertices, co-vertices, foci Hyperbolas: center, vertices, co-vertices, foci, asymptotes $$16x^2 + 64x - 9y^2 + 18y - 89 = 0$$

## Answers (1) 2021-02-06
Since we only answer up to 3 sub-parts, we’ll answer the first 3. Please resubmit the question and specify the other subparts (up to 3) you’d like answered. a) Since the coefficients of $$x^2 and y^2$$ are of opposite signs. 16 and -9. So it is an equation of hyperbola. Answer(a): Hyperbola b) To find the standard form of the equation we have to complete squares for x and y portions separately. Add 89 to both sides $$16x^2 + 64x - 9y^2 + 18y - 89 = 0$$
$$16x^2 + 64x - 9y^2 + 18y = 89$$ Factor out 16 from the x portion and -9 from the y portion $$16(x^2 + 4x) - 9(y^2 - 2y) = 89$$ Then complete square for each section and to balance right side add or subtract the same amount. $$16(x^2 + 4x + 4) - 9(y^2 - 2y + 1) = 89 + 16 (4) - 9(1)$$
$$16(x + 2)^2 - 9(y - 1)^2 = 144$$ Then divide both sides by 144 $$\frac{16(x + 2)^2}{144} - \frac{9(y - 1)^2}{144} = \frac{144}{144}$$
$$\frac{(x+2)^2}{9} - \frac{(y - 1)^2}{16} = 1$$ Answer $$\frac{(x+2)^2}{9} - \frac{(y - 1)^2}{16} = 1$$

### Relevant Questions asked 2021-01-25
Find the equation of the graph for each conic in standard form. Identify the conic, the center, the co-vertex, the focus (foci), major axis, minor axis, $$a^{2}, b^{2},\ and c^{2}.$$ For hyperbola, find the asymptotes $$9x^{2}\ -\ 4y^{2}\ +\ 54x\ +\ 32y\ +\ 119 = 0$$ asked 2020-12-24
For Exercise, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is. If the equation represents a circle, identify the center and radius. • If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. • If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. • If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. $$x2\+\ y2\ −\ 4x\ −\ 6y\ +\ 1 = 0$$ asked 2020-11-12
Find and calculate the center, foci, vertices, asymptotes, and radius, as appropriate, of the conic sections $$x^2 + 2y^2 - 2x - 4y = -1$$ asked 2021-01-06
Write the equation of each conic section, given the following characteristics:
a) Write the equation of an ellipse with center at (3, 2) and horizontal major axis with length 8. The minor axis is 6 units long.
b) Write the equation of a hyperbola with vertices at (3, 3) and (-3, 3). The foci are located at (4, 3) and (-4, 3).
c) Write the equation of a parabola with vertex at (-2, 4) and focus at (-4, 4) asked 2021-01-31
Find the center, foci, vertices, asymptotes, and radius, if necessary, of the conic sections in the equation:
$$\displaystyle{x}^{2}+{4}{x}+{y}^{2}={12}$$ asked 2020-12-27
Eliminate the parameter and obtain the standard form of the rectangular equation. Circle: $$x = h + r cos(?), y = k + r sin(?)$$ Use your result to find a set of parametric equations for the line or conic section. $$(When 0 \leq ? \leq 2?.)$$ Circle: center: (6, 3), radius: 7 asked 2021-05-17
Find an equation of the conic described.graph the equation. Parabola:focus(-1,4.5) vertex (-1,3). asked 2021-02-10
Identify the conic section given by $$\displaystyle{y}^{2}+{2}{y}={4}{x}^{2}+{3}$$
Find its $$\frac{\text{vertex}}{\text{vertices}}\ \text{and}\ \frac{\text{focus}}{\text{foci}}$$ asked 2021-02-25
Give the eccentricities of conic sections with one focus at the origin along with the directrix corresponding to that focus. Find a polar equation for each conic section. $$e = 2,\ x = 4$$ asked 2020-11-09
Identify the conic with th e given equa­tion and give its equation in standard form $$6x^2 - 4xy + 9y^2 - 20x - 10y - 5 = 0$$
...