Step 1: Given \(x = h + r \cos \theta , y = k + \sin \theta\)

Step 2: Solution \(x = h + r \cos \theta , y = k + \sin \theta\)

\(x − h = r \cos \theta, y − k = r \sin \theta\)

Squaring and adding \((x − h)^2 + (y−k)^2 = r^2 \sin^2 \theta + r^2 \cos^2 \theta\)

\((x − h)^2 + (y−k)^2 = r^2\)

With (6,3), radius = 7 \(x = 6 + 7 \cos \theta\)

\(7 = 3 + 7 \sin \theta\)