Question

The accompanying data on y = normalized energy (J/m2J/m^2) and x = intraocular pressure (mmHg) appeared in a scatterplot in the article “Evaluating th

Scatterplots
ANSWERED
asked 2021-05-31

The accompanying data on y = normalized energy \(\displaystyle{\left(\frac{{J}}{{m}}{2}\frac{{J}}{{m}^{{2}}}\right)}\) and x = intraocular pressure (mmHg) appeared in a scatterplot in the article “Evaluating the Risk of Eye Injuries: Intraocular Pressure During High Speed Projectile Impacts” (Current Eye Research, 2012: 43–49); an estimated regression function was superimposed on the plot.
x2761197642571339801278219008 y155314999328131667874116526 x2078219028143979606390525731 y267701652698686640122030730
The standardized residuals resulting from fitting the simple linear regression model (in the same order as the observations) are .98, -1.57, 1.47, .50, -.76, -.84, 1.47, -.85, -1.03, -.20, .40, and .81. Construct a plot of e* versus x and comment. [Note: The model fit in the cited article was not linear.]

Expert Answers (1)

2021-06-01
A simple linear regression model does not appear to be appropriate.
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-01-13

The accompanying data on y = normalized energy \(\displaystyle{\left[{\left(\frac{{J}}{{m}^{{2}}}\right)}\right]}\) and x = intraocular pressure (mmHg) appeared in a scatterplot in the article “Evaluating the Risk of Eye Injuries: Intraocular Pressure During High Speed Projectile Impacts” (Current Eye Research, 2012: 43-49), an estimated regression function was superimposed on the plot.
\(\begin{array}{|c|c|}\hline x & 2761 & 19764 & 25713 & 3980 & 12782 & 19008 & 19028 & 14397 & 9606 & 3905 & 25731 \\ \hline y & 1553 & 14999 & 32813 & 1667 & 8741 & 16526 & 26770 & 16526 & 9868 & 6640 & 1220 & 30730 \\ \hline \end{array}\)
Here is Minitab output from fitting the simple linear regression model. Does the model appear to specify a useful relationship between the two variables?
\(\begin{array}{|c|c|}\hline \text{Predictor Coef SE Coef T P Constant} & -5090 & 2257 & -2.26 & 0.048 \\ \hline \text{Pressure} & 1.2912 & 0.1347 & 9.59 & 0.000 \\ \hline \end{array}\)
\([S=3679.36, R-Sq = 90.2\%, R-Sq(adj)=89.2\% ]\).

asked 2021-02-03

The following data on = soil depth (in centimeters) and y = percentage of montmorillonite in the soil were taken from a scatterplot in the paper "Ancient Maya Drained Field Agriculture: Its Possible Application Today in the New River Floodplain, Belize, C.A." (Agricultural Ecosystems and Environment [1984]: 67-84):
a. Draw a scatterplot of y versus x.
b. The equation of the least-squares line is 0.45x. Draw this line on your scatterplot. Do there appear to be any large residuals?
c. Compute the residuals, and construct a residual plot. Are there any unusual features in the plot?
\(\begin{array}{|c|c|}\hline x & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\ \hline y & 58 & 34 & 32 & 30 & 28 & 27 & 22 \\ \hline \end{array}\)
\(\displaystyle{\left[\hat{{{y}}}={64.50}\right]}\).

asked 2021-06-08
When a correlation value is reported in research journals, there often is not an accompanying scatterplot. Explain why reported correlation values should be supported with either a scatterplot or a description of the scatterplot.
asked 2020-12-05

Use the sample data to construct a scatterplot.
Use the first variable for the x-axis. Based on the scatterplot, what do you conclude about a linear correlation?
The table li sts che t sizes (di stance around chest in inches) and weights (pounds) of anesthetized bears that were measured.
\(\begin{array}{|c|c|}\hline \text{Chest(in.)} & 26 & 45 & 54 & 49 & 35 & 41 & 41 \\ \hline \text{Weight(lb)} & 80 & 344 & 416 & 348 & 166 & 220 & 262 \\ \hline \end{array}\)

...