Using the health records of ever student at a high school, the school nurse created a scatterplot relating y = height (in centimeters) to x = age (in

banganX 2021-05-29 Answered
Using the health records of ever student at a high school, the school nurse created a scatterplot relating y = height (in centimeters) to x = age (in years). After verifying that the conditions for the regression model were met, the nurse calculated the equation of the population regression line to be μ0=105+4.2x with σ=7 cm. If the nurse used a random sample of 50 students from the school to calculate the regression line instead of using all the students, would the slope of the sample regression line be exactly 4.2? Explain your answer.

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Isma Jimenez
Answered 2021-05-30 Author has 16611 answers
No, because the slope of the population regression line is 4.2 and we expect the slope of the sample regression line to be close to 4.2 (but not exactly 4.2) as there is some sampling variability in a sample.
Not exactly what you’re looking for?
Ask My Question
38
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-05-25

Using the health records of ever student at a high school, the school nurse created a scatterplot relating y = height (in centimeters) to x = age (in years). After verifying that the conditions for the regression model were met, the nurse calculated the equation of the population regression line to be &\(\mu;0=105+4.2x\) with &\(\sigma;=7\) cm. According to the population regression line, what is the average height of 15-year-old students at this high school?

asked 2021-01-10

Using the health records of ever student at a high school, the school nurse created a scatterplot relating y = height (in centimeters) to x = age (in years).
After verifying that the conditions for the regression model were met, the nurse calculated the equation of the population regression line to be \(\displaystyle\mu_{{0}}={105}+{4.2}{x}\ \text{with}\ \sigma={7}{c}{m}\).
About what percent of 15-year-old students at this school are taller than 180 cm?

asked 2020-11-10
Using the health records of ever student at a high school, the school nurse created a scatterplot relating \(\displaystyle{y}=\ \text{height (in centimeters) to}\ {x}=\ \text{age (in years).}\)
\(\displaystyle\text{After verifying that the conditions for the regression model were met, the nurse calculated the equation of the population regression line to be}\ \mu_{{{0}}}={105}\ +\ {4.2}{x}\ \text{with}\ \sigma={7}\ {c}{m}.\) About what percent of 15-year-old students at this school are taller than 180 cm?
asked 2021-06-23

Some high school physics students dropped a ball and measured the distance fallen (in centimeters) at various times (in seconds) after its release. If you have studied physics, you probably know that the theoretical relationship between the variables is distance \(=490(time)^2.\) Which of the following scatter-plots would not approximately follow a straight line?

(a) A plot of distance versus \(time^2\)

(b) A plot of radic distance versus time

(c) A plot of distance versus radic time

(d) A plot of \(\ln\)(distance) versus \(\ln(time)\)

(e) A plot of \(\log\)(distance) versus \(\log(time)\)

asked 2021-05-22
At a family reunion, each family member recorded his or her age and height. a. Fully describe the association. b. Copy the scatterplot and draw the trend line. Does your y-intercept make sense in this problem situation?
asked 2021-07-04

Using the daily high and low temperature readings at Chicago's O'Hare International Airport for an entire year, a meteorologist made a scatterplot relating y = high temperature to x = low temperature, both in degrees Fahrenheit.

After verifying that the conditions for the regression model were met, the meteorologist calculated the equation of the population regression line to be  \(\left[\mu_y=16.6+1.02\right] with \left[\sigma = 6.6+^\circ F\right]\)

If the meteorologist used a random sample of 10 days to calculate the regression line instead of using all the days in the year, would the slope of the sample regression line be exactly 1.02? Explain your answer.

asked 2021-02-03

The following data on = soil depth (in centimeters) and y = percentage of montmorillonite in the soil were taken from a scatterplot in the paper "Ancient Maya Drained Field Agriculture: Its Possible Application Today in the New River Floodplain, Belize, C.A." (Agricultural Ecosystems and Environment [1984]: 67-84):
a. Draw a scatterplot of y versus x.
b. The equation of the least-squares line is 0.45x. Draw this line on your scatterplot. Do there appear to be any large residuals?
c. Compute the residuals, and construct a residual plot. Are there any unusual features in the plot?
\(\begin{array}{|c|c|}\hline x & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\ \hline y & 58 & 34 & 32 & 30 & 28 & 27 & 22 \\ \hline \end{array}\)
\(\displaystyle{\left[\hat{{{y}}}={64.50}\right]}\).

...