Given the matrices A and B shown below , solve for X in the equation -frac{1}{3}X+frac{1}{2}A=B A=begin{bmatrix}-10 & 4 8 & 8 end{bmatrix}, B=begin{bmatrix}9 & -1 4& 2 end{bmatrix}

Given the matrices A and B shown below , solve for X in the equation -frac{1}{3}X+frac{1}{2}A=B A=begin{bmatrix}-10 & 4 8 & 8 end{bmatrix}, B=begin{bmatrix}9 & -1 4& 2 end{bmatrix}

Question
Matrices
asked 2020-12-09
Given the matrices A and B shown below , solve for X in the equation \(-\frac{1}{3}X+\frac{1}{2}A=B\)
\(A=\begin{bmatrix}-10 & 4 \\8 & 8 \end{bmatrix}, B=\begin{bmatrix}9 & -1 \\4& 2 \end{bmatrix}\)

Answers (1)

2020-12-10
Step 1
the given matrices are:
\(A=\begin{bmatrix}-10 & 4 \\8 & 8 \end{bmatrix}, B=\begin{bmatrix}9 & -1 \\4& 2 \end{bmatrix}\)
we have to solve for X in the equation \(-\frac{1}{3}X+\frac{1}{2}A=B\)
Step 2
the given matrices are: \(A=\begin{bmatrix}-10 & 4 \\8 & 8 \end{bmatrix} \text{ and }B=\begin{bmatrix}9 & -1 \\4& 2 \end{bmatrix}\)
\(-\frac{1}{3}X+\frac{1}{2}A=B\)
\(\frac{-1}{3}X+\frac{1}{2}\begin{bmatrix}-10 & 4 \\8 & 8 \end{bmatrix}=\begin{bmatrix}9 & -1 \\4& 2 \end{bmatrix}\)
\(\frac{-1}{3}X+\begin{bmatrix}-\frac{10}{2} & \frac{4}{2} \\\frac{8}{2} & \frac{8}{2} \end{bmatrix}=\begin{bmatrix}9 & -1 \\4& 2 \end{bmatrix}\)
\(\frac{-1}{3}X+\begin{bmatrix}-5 & 2 \\4 & 4 \end{bmatrix}=\begin{bmatrix}9 & -1 \\4& 2 \end{bmatrix}\)
\(\frac{-1}{3}X=\begin{bmatrix}9 & -1 \\4& 2 \end{bmatrix}-\begin{bmatrix}-5 & 2 \\4 & 4 \end{bmatrix}\)
\(\frac{-1}{3}X=\begin{bmatrix}9 & -1 \\4& 2 \end{bmatrix}+\begin{bmatrix}5 & -2 \\-4 & -4 \end{bmatrix}\)
\(\frac{-1}{3}X=\begin{bmatrix}9+5 & -1-2 \\4-4& 2-4 \end{bmatrix}\)
\(\frac{-1}{3}X=\begin{bmatrix}14 & -3 \\0& -2 \end{bmatrix}\)
\(X=-3\begin{bmatrix}14 & -3 \\0& -2 \end{bmatrix}\)
\(X=\begin{bmatrix}14\times(-3) & -3\times(-3) \\0\times(-3)& -2\times(-3) \end{bmatrix}\)
\(X=\begin{bmatrix}-42 & 9 \\0 & 6 \end{bmatrix}\)
Step 3
therefore the matrix X is \(\begin{bmatrix}-42 & 9 \\0 & 6 \end{bmatrix}\)
therefore the solution of X for the equation \(-\frac{1}{3}X+\frac{1}{2}A=B \text{ is } X=\begin{bmatrix}-42 & 9 \\0 & 6 \end{bmatrix}\)
0

Relevant Questions

asked 2020-10-25

Solve for X in the equation, given
\(3X + 2A = B\)
\(A=\begin{bmatrix}-4 & 0 \\1 & -5\\-3&2 \end{bmatrix} \text{ and } B=\begin{bmatrix}1 & 2 \\ -2 & 1 \\ 4&4 \end{bmatrix}\)

asked 2021-06-06
Using givens rotation during QU factorization of the matrix A below, Make element (3,1) in A zero.
\([A]=\begin{bmatrix}3 & 4 & 5 \\1 & 7 & 8 \\ 2 & 6 & 9\end{bmatrix}\)
asked 2021-05-19
Solve the system Ax = b using the given LU factorization of A
\(A=\begin{bmatrix}2 & -4 & 0 \\3 & -1 & 4 \\ -1 & 2 & 2\end{bmatrix}=\begin{bmatrix}1 & 0 & 0 \\\frac{3}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1\end{bmatrix}\times \begin{bmatrix}2 & -4 & 0 \\0 & 5 & 4 \\ 0 & 0 & 2\end{bmatrix}, b=\begin{bmatrix}2 \\0 \\-5\end{bmatrix}\)
asked 2021-02-13
Matrices C and D are shown below
C=\begin{bmatrix}2&1&0 \\0&3&4\\0&2&1 \end{bmatrix},D=\begin{bmatrix}a & b&-0.4 \\0&-0.2&0.8\\0&0.4&-0.6 \end{bmatrix}
What values of a and b will make the equation CD=I true?
a)a=0.5 , b=0.1
b)a=0.1 , b=0.5
c)a=-0.5 , b=-0.1
asked 2020-12-25
The 2 \times 2 matrices A and B below are related to matrix C by the equation: C=3A-2B. Which of the following is matrix C.
\(A=\begin{bmatrix}3 & 5 \\-2 & 1 \end{bmatrix} B=\begin{bmatrix}-4 & 5 \\2 & 1 \end{bmatrix}\)
\(\begin{bmatrix}-1 & 5 \\2 & 1 \end{bmatrix}\)
\(\begin{bmatrix}-18 & 5 \\10 & 1 \end{bmatrix}\)
\(\begin{bmatrix}18 & -5 \\-10 & -1 \end{bmatrix}\)
\(\begin{bmatrix}1 & -5 \\-2 & -1 \end{bmatrix}\)
asked 2021-02-02
For the following Leslie matrix , find an approximate expression for the population distribution after n years , given that the initial population distribution is given by \(X(0)=\begin{bmatrix}2000 \\4000 \end{bmatrix} , L^n=\begin{bmatrix}0.8 & 0.4 \\1.2 & 0 \end{bmatrix}\)
Select the correct choice below and fill in the answer boxes to complete your choise.
a)\(X\approx()()^n\begin{bmatrix}1 \\ () \end{bmatrix}\)
b)\(X\approx()^n\begin{bmatrix}1 \\ () \end{bmatrix}\)
asked 2021-02-25
Use the matrices AA and BB below instead of those in your text.
\(A=\begin{bmatrix}-6 & -1 \\ -3 & -4 \end{bmatrix} B=\begin{bmatrix} -1 & 3 \\ -5 & -8 \end{bmatrix}\) 1) 2A+B=? 2)A-4B=?
asked 2020-11-30

Let M be the vector space of \(2 \times 2\) real-valued matrices.
\(M=\begin{bmatrix}a & b \\c & d \end{bmatrix}\)
and define \(M^{\#}=\begin{bmatrix}d & b \\c & a \end{bmatrix}\) Characterize the matrices M such that \(M^{\#}=M^{-1}\)

asked 2020-11-10
If \(A=\begin{bmatrix}-2 & 1&-4 \\-2 & 4&-1 \\ 1 &-1 &-4 \end{bmatrix} \text{ and } B=\begin{bmatrix}-2 & 4&2 \\-4 & -1&1 \\ 4 &1 &1 \end{bmatrix}\)
then AB=?
BA=?
True or false : AB=BA for any two square matrices A and B of the same size.
asked 2021-05-04
Solve the system Ax = b using the given LU factorization of A
\(A=\begin{bmatrix}-2 & 1 \\2 & 5 \end{bmatrix}=\begin{bmatrix}1 & 0 \\-1 & 1 \end{bmatrix}\begin{bmatrix}-2 & 1 \\0 & 6 \end{bmatrix}, b=\begin{bmatrix}5 \\1 \end{bmatrix}\)
...